## Intégrabilité algébrique du dressing chain à 5 particules

## Carlos León



Laboratoire de Mathématiques et Applications Université de Poitiers

> Rencontre du GDR GDM La Rochelle 4 juin 2019

$$\dot{x}_i = \varepsilon_i x_i + \sum_{j=1}^n A_{i,j} x_i x_j, \qquad i = 1, \dots, n.$$

$$\dot{x}_i = \varepsilon_i x_i + \sum_{j=1}^n A_{i,j} x_i x_j, \qquad i = 1, \dots, n.$$

Dans le cas des systèmes de Bogoyavlenskij-Itoh (BI), n=2k+1, il n'y a pas de termes linéaires et la matrice A prend la forme

$$A \equiv (A_{i,j})_{i,j} := \operatorname{circ}(0,1,\ldots,1,-1,\ldots,-1).$$

$$\dot{x}_i = \varepsilon_i x_i + \sum_{j=1}^n A_{i,j} x_i x_j, \qquad i = 1, \dots, n.$$

Dans le cas des systèmes de Bogoyavlenskij-Itoh (BI), n=2k+1, il n'y a pas de termes linéaires et la matrice A prend la forme

$$A \equiv (A_{i,j})_{i,j} := \operatorname{circ}(0,1,\ldots,1,-1,\ldots,-1).$$

Autrement dit,  $\dot{x}_i = x_i \sum_{j=1}^k (x_{i+j} - x_{i-j}), \quad i = 1, \dots, n,$  où on utilise la convention ciclyque  $x_{i+n} = x_i$ , pour tout  $i \in \mathbb{Z}$ .

- ♦ Crochet de Poisson :  $\{x_i, x_j\}_{\text{BI}} := A_{i,j} x_i x_j, \qquad 1 \le i, j \le n = 2k + 1.$
- $\diamond \; \text{Hamiltonien} : H_{\text{BI}} := x_1 + \dots + x_n.$
- $\diamond$  Equations du mouvement :  $\dot{x}_i = \{x_i, H_{\text{BI}}\}_{\text{BI}} = \sum_{j=1}^k (x_{i+j} x_{i-j}), \quad i = 1, \dots, n.$
- $\diamond$  Casimir :  $C_{\mathrm{BI}} := x_1 \cdots x_n$ .

- ⋄ Crochet de Poisson :  $\{x_i, x_j\}_{\text{BI}} := A_{i,j} x_i x_j, \qquad 1 \le i, j \le n = 2k + 1.$
- $\diamond \text{ Hamiltonien}: H_{\mathrm{BI}} := x_1 + \dots + x_n.$
- $\diamond$  Casimir :  $C_{\text{BI}} := x_1 \cdots x_n$ .

 $Bogoyavlenskij \longrightarrow \text{Représentation de Lax}$ :

- ♦ Crochet de Poisson :  $\{x_i, x_j\}_{\text{BI}} := A_{i,j} x_i x_j, \qquad 1 \le i, j \le n = 2k + 1.$
- $\diamond \text{ Hamiltonien}: H_{\mathrm{BI}} := x_1 + \dots + x_n.$
- $\diamond$  Equations du mouvement :  $\dot{x}_i = \{x_i, H_{\text{BI}}\}_{\text{BI}} = \sum_{j=1}^k (x_{i+j} x_{i-j}), \quad i = 1, \dots, n.$
- $\diamond$  Casimir :  $C_{\text{BI}} := x_1 \cdots x_n$ .

 $Bogoyavlenskij \longrightarrow \text{Représentation de Lax}$ :

$$(X + \lambda M)^{\cdot} = [X + \lambda M, B - \lambda M^{k+1}], \text{ où}$$
 
$$X_{i,j} := \delta_{i,j+k} \, x_i, \quad M_{i,j} := \delta_{i+1,j}, \quad B_{i,j} := -\delta_{i,j} (x_i + \dots + x_{i+k}) \; .$$

En réalité,

$$p_{X+\lambda M}(\mu) = \det(X + \lambda M - \mu \operatorname{Id}) = \lambda^n - \mu^n + \sum_{j=0}^k (\lambda \mu)^{k-j} H_j$$

En réalité,

$$p_{X+\lambda M}(\mu) = \det(X + \lambda M - \mu \operatorname{Id}) = \lambda^n - \mu^n + \sum_{j=0}^k (\lambda \mu)^{k-j} H_j$$

$$H_j \in \mathbb{C}_{2j+1}[x_1,\ldots,x_{x_n}],$$
 pour chaque  $j \in \{0,\ldots,k\},$   $H_0 = H_{\mathrm{BI}} = x_1 + \cdots + x_n,$   $H_k = C_{\mathrm{BI}} = x_1 \cdots x_n.$ 

En réalité,

$$p_{X+\lambda M}(\mu) = \det(X + \lambda M - \mu \operatorname{Id}) = \lambda^n - \mu^n + \sum_{j=0}^k (\lambda \mu)^{k-j} H_j$$

$$H_j \in \mathbb{C}_{2j+1}[x_1, \dots, x_{x_n}], \text{ pour chaque } j \in \{0, \dots, k\},$$
 $H_0 = H_{\text{BI}} = x_1 + \dots + x_n,$ 
 $H_k = C_{\text{BI}} = x_1 \cdot \dots \cdot x_n.$ 

 $Itoh \longrightarrow (\mathbb{C}^n, \{\cdot, \cdot\}_{BI}, (H_0, \dots, H_k))$  est un système intégrable au sens de Liouville.

On va s'intéresser à une famille de déformations des systèmes BI.

On va s'intéresser à une famille de déformations des systèmes BI. Soient  $\epsilon_1,\ldots,\epsilon_n$  des paramètres de déformation, tels que

$$\epsilon_1 + \dots + \epsilon_n = 0.$$

On considère maintenant le système d'équations différentielles

$$\dot{x}_i = x_i \sum_{j=1}^k (x_{i+j} - x_{i-j}) + \epsilon_i, \quad i = 1, \dots, n.$$

On va s'intéresser à une famille de déformations des systèmes BI. Soient  $\epsilon_1,\ldots,\epsilon_n$  des paramètres de déformation, tels que

$$\epsilon_1 + \dots + \epsilon_n = 0.$$

On considère maintenant le système d'équations différentielles

$$\dot{x}_i = x_i \sum_{j=1}^k (x_{i+j} - x_{i-j}) + \epsilon_i, \quad i = 1, \dots, n.$$

De même, le système ci-dessus admet une formulation hamiltonienne :

- $\diamond$  Soient  $\beta_{i,j}$  tels que  $\beta_{j,i} = -\beta_{i,j}$  et  $\beta_{i,j} = 0$  si  $|i-j| \notin \{k, k+1\}$ .
- $\diamond \{x_i, x_j\}_{\mathrm{BI}}^{\epsilon} := A_{i,j} x_i x_j + \beta_{i,j}, \qquad \epsilon_i = \beta_{i,i+k} \beta_{i-k,k},$
- $\diamond H_{\mathrm{BI}^{\epsilon}} = H_{\mathrm{BI}} = x_1 + \dots + x_n.$

$$(\mathbb{C}^n, \{\cdot, \cdot\}_{\mathrm{BI}^\epsilon}, (H_0^\epsilon, \dots, H_k^\epsilon))$$

est un système intégrable au sens de Liouville.

$$(\mathbb{C}^n, \{\cdot, \cdot\}_{\mathrm{BI}^\epsilon}, (H_0^\epsilon, \dots, H_k^\epsilon))$$

est un système intégrable au sens de Liouville.

Opérateur de Lax : 
$$L(\lambda):=X+\lambda^{-1}\Delta+\lambda M,$$
 où  $\Delta_{i,j}:=\delta_{i,j}\beta_{i+k,j}.$ 

$$(\mathbb{C}^n, \{\cdot, \cdot\}_{\mathrm{BI}^\epsilon}, (H_0^\epsilon, \dots, H_k^\epsilon))$$

est un système intégrable au sens de Liouville.

Opérateur de Lax :  $L(\lambda) := X + \lambda^{-1}\Delta + \lambda M$ , où  $\Delta_{i,j} := \delta_{i,j}\beta_{i+k,j}$ .

$$p_{L(\lambda)}(\mu) = \lambda^n + \lambda^{-n} \prod_{j=1}^n (\beta_{j+k,j} - \lambda \mu) + \sum_{j=0}^k (\lambda \mu)^{k-j} H_j^{\epsilon}.$$

$$(\mathbb{C}^n, \{\cdot, \cdot\}_{\mathrm{BI}^\epsilon}, (H_0^\epsilon, \dots, H_k^\epsilon))$$

est un système intégrable au sens de Liouville.

Opérateur de Lax :  $L(\lambda):=X+\lambda^{-1}\Delta+\lambda M,$  où  $\Delta_{i,j}:=\delta_{i,j}\beta_{i+k,j}.$ 

$$p_{L(\lambda)}(\mu) = \lambda^n + \lambda^{-n} \prod_{j=1}^n (\beta_{j+k,j} - \lambda \mu) + \sum_{j=0}^k (\lambda \mu)^{k-j} H_j^{\epsilon}.$$

 $\mathbf{Question}:$  Le système  $BI^\epsilon$  est-il algébriquement complètement intégrable (a.c.i.) ?

Soit  $\mathcal{F} := (\mathbb{C}^n, \{\cdot, \cdot\}, \mathbf{F})$  un système intégrable, où  $\{\cdot, \cdot\}$  est un crochet de Poisson polynomial et  $\mathbf{F} = (F_1, \dots, F_s)$  est constitué de polynômes. On dit que  $\mathcal{F}$  est une système a.c.i. si

Soit  $\mathcal{F} := (\mathbb{C}^n, \{\cdot, \cdot\}, \mathbf{F})$  un système intégrable, où  $\{\cdot, \cdot\}$  est un crochet de Poisson polynomial et  $\mathbf{F} = (F_1, \dots, F_s)$  est constitué de polynômes. On dit que  $\mathcal{F}$  est une système a.c.i. si

 $\diamond$  Pour  $\kappa \in \mathbb{C}^s$  générique, la fibre  $\mathbf{F}_{\kappa}$  est isomorphe à une partie affine d'un tore complexe algébrique,

$$\mathbf{F}_{\kappa} \simeq (\mathbb{C}^{n-s}/\Lambda_{\kappa}) - \mathcal{D}_{\kappa},$$

où  $\Lambda_{\kappa}$  est un réseau dans  $\mathbb{C}^{n-s}$  est  $\mathcal{D}_{\kappa}$  est une hypersurface algébrique de  $\mathbb{C}^{n-s}/\Lambda_{\kappa}$ ;

 $\diamond$  Les champs de vecteurs  $\mathfrak{X}_{F_i}$ , restreints à  $\mathbf{F}_{\kappa}$  sont constants.



Soit  $\mathcal{F} := (\mathbb{C}^n, \{\cdot, \cdot\}, \mathbf{F})$  un système intégrable, où  $\{\cdot, \cdot\}$  est un crochet de Poisson polynomial et  $\mathbf{F} = (F_1, \dots, F_s)$  est constitué de polynômes. On dit que  $\mathcal{F}$  est une système a.c.i. si

♦ Pour  $\kappa \in \mathbb{C}^s$  générique, la fibre  $\mathbf{F}_{\kappa}$  est isomorphe à une partie affine d'un tore complexe algébrique,

$$\mathbf{F}_{\kappa} \simeq (\mathbb{C}^{n-s}/\Lambda_{\kappa}) - \mathcal{D}_{\kappa},$$

où  $\Lambda_{\kappa}$  est un réseau dans  $\mathbb{C}^{n-s}$  est  $\mathcal{D}_{\kappa}$  est une hypersurface algébrique de  $\mathbb{C}^{n-s}/\Lambda_{\kappa}$ ;

 $\diamond$  Les champs de vecteurs  $\mathfrak{X}_{F_i}$ , restreints à  $\mathbf{F}_{\kappa}$  sont constants.

On va aborder la question de l'intégrabilité algébrique du système déformé dans le cas n=5 (i.e., k=2).

On a alors le système d'équations différentielles

$$\dot{x}_i = x_i (x_{i+1} + x_{i+2} - x_{i-1} - x_{i-2}) + \epsilon_i, \quad i = 1, \dots, 5.$$

On a alors le système d'équations différentielles

$$\dot{x}_i = x_i (x_{i+1} + x_{i+2} - x_{i-1} - x_{i-2}) + \epsilon_i, \quad i = 1, \dots, 5.$$

$$\{x_i, x_j\}_{\mathrm{BI}}^{\epsilon} := A_{i,j} x_i x_j + \beta_{i,j}, \quad 1 \le i, j \le 5.$$

On a alors le système d'équations différentielles

$$\dot{x}_i = x_i (x_{i+1} + x_{i+2} - x_{i-1} - x_{i-2}) + \epsilon_i, \quad i = 1, \dots, 5.$$

$$\{x_i, x_j\}_{\text{BI}}^{\epsilon} := A_{i,j} x_i x_j + \beta_{i,j}, \quad 1 \le i, j \le 5.$$

$$\diamond \ H_1^{\epsilon} := \sum_{i=1}^5 x_i,$$

$$A_2^{\epsilon} := \sum_{i=1}^{5} x_{i-2} x_i x_{i+2} + \sum_{i=1}^{5} (\beta_{i+1,i-2} + \beta_{i+2,i-1}) x_i,$$

$$\diamond \ \ H_3^{\epsilon} := \prod_{i=1}^5 x_i + \sum_{i=1}^5 (\beta_{i+1,i-2}\beta_{i+2,i-1}) x_i + \sum_{i=1}^5 \beta_{i-1,i+1} x_{i-2} x_i x_{i+2}.$$

Pour étudier l'intégrabilité algébrique du  $\mathrm{BI}^\epsilon-5,$  on utilise l'analyse de Painlevè.

Pour étudier l'intégrabilité algébrique du  $\mathrm{BI}^\epsilon-5,$  on utilise l'analyse de Painlevè.

On commence par chercher des solutions de Laurent formelles homogènes

$$x_i(t) = \frac{1}{t} \sum_{j \ge 0} x_i^{(j)} t^j.$$

Pour étudier l'intégrabilité algébrique du  $\mathrm{BI}^\epsilon-5$ , on utilise l'analyse de Painlevè.

On commence par chercher des solutions de Laurent formelles homogènes

$$x_i(t) = \frac{1}{t} \sum_{j \ge 0} x_i^{(j)} t^j.$$

A partir de l'approche précédente, il est possible d'écrire une famille de solutions de Laurent en fonction de 4 paramètres  $(a,\,b,\,c$  et d), ce que l'on appelle  $une\ balance\ principale$ :

Ensuite, pour un point générique  $\kappa = (\kappa_1, \kappa_2, \kappa_3) \in \mathbb{C}^3$ , on considère la courbe dans le plan définie par les équations  $H_i^{\epsilon}(x(t)) = \kappa_i$ , pour  $1 \leq i \leq 3$ . Cette courbe est isomorphe à

$$\Gamma_1: \quad a^3b^2 + a^2b^3 + q_{2,2}(\epsilon,\kappa)a^2b^2 + q_{2,1}(\epsilon,\kappa)a^2b + q_{1,2}(\epsilon,\kappa)ab^2 + q_{1,1}(\epsilon,\kappa)ab + q_{1,0}(\epsilon,\kappa)a + q_{0,1}(\epsilon,\kappa)b + q_{0,0}(\epsilon,\kappa) = 0,$$

Ensuite, pour un point générique  $\kappa = (\kappa_1, \kappa_2, \kappa_3) \in \mathbb{C}^3$ , on considère la courbe dans le plan définie par les équations  $H_i^{\epsilon}(x(t)) = \kappa_i$ , pour  $1 \leq i \leq 3$ . Cette courbe est isomorphe à

$$\Gamma_1: \quad a^3b^2 + a^2b^3 + q_{2,2}(\epsilon,\kappa)a^2b^2 + q_{2,1}(\epsilon,\kappa)a^2b + q_{1,2}(\epsilon,\kappa)ab^2 + q_{1,1}(\epsilon,\kappa)ab + q_{1,0}(\epsilon,\kappa)a + q_{0,1}(\epsilon,\kappa)b + q_{0,0}(\epsilon,\kappa) = 0,$$

où  $q_{i,j}(\epsilon,\kappa)$  sont des polynômes dans les variables  $\epsilon$  et  $\kappa$ , tels que

$$q_{2,1}(0,\kappa) = q_{1,2}(0,\kappa) = q_{1,0}(0,\kappa) = q_{0,1}(0,\kappa) = 0,$$
  
 $q_{2,2}(0,\kappa) = -\kappa_1, \ q_{1,1}(0,\kappa) = \kappa_2 \text{ et } q_{0,0}(0,\kappa) = -\kappa_3.$ 

Ensuite, pour un point générique  $\kappa = (\kappa_1, \kappa_2, \kappa_3) \in \mathbb{C}^3$ , on considère la courbe dans le plan définie par les équations  $H_i^{\epsilon}(x(t)) = \kappa_i$ , pour  $1 \leq i \leq 3$ . Cette courbe est isomorphe à

$$\Gamma_1: \quad a^3b^2 + a^2b^3 + q_{2,2}(\epsilon,\kappa)a^2b^2 + q_{2,1}(\epsilon,\kappa)a^2b + q_{1,2}(\epsilon,\kappa)ab^2 + q_{1,1}(\epsilon,\kappa)ab + q_{1,0}(\epsilon,\kappa)a + q_{0,1}(\epsilon,\kappa)b + q_{0,0}(\epsilon,\kappa) = 0,$$

où  $q_{i,j}(\epsilon,\kappa)$  sont des polynômes dans les variables  $\epsilon$  et  $\kappa$ , tels que

$$q_{2,1}(0,\kappa) = q_{1,2}(0,\kappa) = q_{1,0}(0,\kappa) = q_{0,1}(0,\kappa) = 0,$$
  

$$q_{2,2}(0,\kappa) = -\kappa_1, \ q_{1,1}(0,\kappa) = \kappa_2 \text{ et } q_{0,0}(0,\kappa) = -\kappa_3.$$

Le modèle projectif lisse de cette courbe, également noté  $\Gamma_1$ , possède cinq points à l'infini, qui seront désignés par  $\infty$ ,  $\infty_-$ ,  $\infty_-'$ ,  $\infty_+$  et  $\infty_+'$ .

En termes d'un paramètre local  $\eta$ :

$$\infty: \quad a = \frac{1}{\eta}, \quad b = -\frac{1}{\eta} + \kappa_1 + (\beta_{2,4} - \beta_{3,5} + \beta_{4,1} - \beta_{5,2})\eta + O(\eta^2), 
\infty_{-}: \quad a = \frac{1}{\eta}, \quad b = (-\beta_{1,3} + \beta_{5,2})\eta + \frac{q_{0,0}(\beta_{5,2},\kappa)}{\beta_{3,5} - \beta_{5,2}}\eta^2 + O(\eta^3), 
\infty'_{-}: \quad a = \frac{1}{\eta}, \quad b = (-\beta_{1,3} + \beta_{3,5})\eta - \frac{q_{0,0}(\beta_{3,5},\kappa)}{\beta_{3,5} - \beta_{5,2}}\eta^2 + O(\eta^3), 
\infty_{+}: \quad a = \frac{1}{\eta}, \quad b = (-\beta_{1,3} + \beta_{2,4})\eta + \frac{q_{0,0}(\beta_{2,4},\kappa)}{\beta_{2,4} - \beta_{4,1}}\eta^2 + O(\eta^3), 
\infty'_{+}: \quad a = \frac{1}{\eta}, \quad b = (-\beta_{1,3} + \beta_{4,1})\eta - \frac{q_{0,0}(\beta_{4,1},\kappa)}{\beta_{2,4} - \beta_{4,1}}\eta^2 + O(\eta^3).$$

Maintenant, pour  $\kappa \in \mathbb{C}^3$  générique, on s'intéresse à la construction d'un plongement de la variété  $\mathbf{F}_{\kappa} := \{x \in \mathbb{C}^5 \mid H_i^{\epsilon}(x) = \kappa_i, \ 1 \leq i \leq 3\}$  dans un espace projectif  $\mathbb{P}^N$ .

Maintenant, pour  $\kappa \in \mathbb{C}^3$  générique, on s'intéresse à la construction d'un plongement de la variété  $\mathbf{F}_{\kappa} := \{x \in \mathbb{C}^5 \mid H_i^{\epsilon}(x) = \kappa_i, \ 1 \leq i \leq 3\}$  dans un espace projectif  $\mathbb{P}^N$ .

L'idée est de chercher tous les polynômes  $z_i$  homogènes à poids, tels que  $z_i(x(t))$  ait un pôle d'ordre au plus 1, et qu'ils soient indépendants sur l'algèbre engendrée par  $H_1^{\epsilon}$ ,  $H_2^{\epsilon}$  et  $H_3^{\epsilon}$ .

Maintenant, pour  $\kappa \in \mathbb{C}^3$  générique, on s'intéresse à la construction d'un plongement de la variété  $\mathbf{F}_{\kappa} := \{x \in \mathbb{C}^5 \mid H_i^{\epsilon}(x) = \kappa_i, \ 1 \leq i \leq 3\}$  dans un espace projectif  $\mathbb{P}^N$ .

L'idée est de chercher tous les polynômes  $z_i$  homogènes à poids, tels que  $z_i(x(t))$  ait un pôle d'ordre au plus 1, et qu'ils soient indépendants sur l'algèbre engendrée par  $H_1^{\epsilon}$ ,  $H_2^{\epsilon}$  et  $H_3^{\epsilon}$ .

On considère les 25 polynômes

$$\begin{split} z_0 &:= 1, \\ z_i &:= x_i, \quad i = 1, \dots, 4, \\ z_{4+i} &:= x_i x_{i+2}, \quad i = 1, \dots, 5, \\ z_{9+i} &:= x_{i-2} x_i x_{i+2}, \quad i = 1, \dots, 4, \\ z_{13+i} &:= x_{i-2} x_i^2 x_{i+2}, \quad i = 1, \dots, 5, \\ z_{19} &:= x_4 x_3 (x_1 x_2 + x_1 x_3 + \epsilon_1), \\ z_{19+i} &:= x_{i-2} x_i^3 x_{i+2} + x_i^2 (\epsilon_{i-2} x_{i+2} - \epsilon_{i+2} x_{i-2}), \quad i = 1, \dots, 5. \end{split}$$

Pour chacune des cinq familles de balances principales, l'application  $x\mapsto (1:z_1(x):\cdots:z_{24}(x))$  s'étend à un plongement holomorphique  $\varphi_\kappa^{(i)}:\Gamma_\kappa^{(i)}\hookrightarrow\mathbb{P}^{24}$ .

Pour chacune des cinq familles de balances principales, l'application  $x \mapsto (1: z_1(x): \dots: z_{24}(x))$  s'étend à un plongement holomorphique  $\varphi_{\kappa}^{(i)}: \Gamma_{\kappa}^{(i)} \hookrightarrow \mathbb{P}^{24}$ .

On notera

$$\mathcal{D}_{\kappa}^{(i)} := \overline{\varphi_{\kappa}^{(i)}(\Gamma_{\kappa}^{(i)})},$$

$$P_{i} := \varphi_{\kappa}^{(i)}(\infty_{i}) \text{ et } Q_{i} := \varphi_{\kappa}^{(i+2)}(\infty_{i+2,-}).$$

Pour chacune des cinq familles de balances principales, l'application  $x \mapsto (1: z_1(x): \dots: z_{24}(x))$  s'étend à un plongement holomorphique  $\varphi_{\kappa}^{(i)}: \Gamma_{\kappa}^{(i)} \hookrightarrow \mathbb{P}^{24}$ .

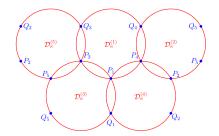
On notera

$$\mathcal{D}_{\kappa}^{(i)} := \overline{\varphi_{\kappa}^{(i)}(\Gamma_{\kappa}^{(i)})},$$

$$P_{i} := \varphi_{\kappa}^{(i)}(\infty_{i}) \text{ et } Q_{i} := \varphi_{\kappa}^{(i+2)}(\infty_{i+2,-}).$$

Les informations de l'analyse peuvent être résumées dans le tableau suivant :

| $\mathcal{D}_{\kappa}^{(1)}$ | $\mathcal{D}_{\kappa}^{(2)}$ | $\mathcal{D}_{\kappa}^{(3)}$ | $\mathcal{D}_{\kappa}^{(4)}$ | $\mathcal{D}_{\kappa}^{(5)}$ |
|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|
| $P_4$                        | $P_5$                        | $P_1$                        | $P_2$                        | $P_3$                        |
| $Q_4$                        | $Q_5$                        | $Q_1$                        | $Q_2$                        | $Q_3$                        |
| $P_1$                        | $P_2$                        | $P_3$                        | $P_4$                        | $P_5$                        |
| $Q_3$                        | $Q_4$                        | $Q_5$                        | $Q_1$                        | $Q_2$                        |
| $P_3$                        | $P_4$                        | $P_5$                        | $P_1$                        | $P_2$                        |



## Cas intermédiaires

## Cas intermédiaires

Un epsilon est égal à zero :

| $\mathcal{D}_{\kappa}^{(1)}$ | $\mathcal{D}_{\kappa}^{(2)}$ | $\mathcal{D}_{\kappa}^{(3)}$ | $\mathcal{D}_{\kappa}^{(4)}$ | $\mathcal{D}_{\kappa}^{(5)}$ |
|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|
| $P_4$                        | $P_5$                        | $P_1$                        | $P_2$                        | $P_3$                        |
| $Q_4$                        | F 5                          | $Q_1$                        | $Q_2$                        | $Q_3$                        |
| $P_1$                        | $P_2$                        | $P_3$                        | $P_4$                        | $P_5$                        |
| $Q_3$                        | $Q_4$                        | $P_5$                        | $Q_1$                        | $Q_2$                        |
| $P_3$                        | $P_4$                        | 15                           | $P_1$                        | $P_2$                        |

#### Cas intermédiaires

Un epsilon est égal à zero :

|   | $\mathcal{D}_{\kappa}^{(1)}$ | $\mathcal{D}_{\kappa}^{(2)}$ | $\mathcal{D}_{\kappa}^{(3)}$ | $\mathcal{D}_{\kappa}^{(4)}$ | $\mathcal{D}_{\kappa}^{(5)}$ |
|---|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|
| ſ | $P_4$                        | D.                           | $P_1$                        | $P_2$                        | $P_3$                        |
|   | $Q_4$                        | $P_5$                        | $Q_1$                        | $Q_2$                        | $Q_3$                        |
| ſ | $P_1$                        | $P_2$                        | $P_3$                        | $P_4$                        | $P_5$                        |
| ſ | $Q_3$                        | $Q_4$                        | $P_5$                        | $Q_1$                        | $Q_2$                        |
| l | $P_3$                        | $P_4$                        | 15                           | $P_1$                        | $P_2$                        |

Deux epsilon sont égaux à zero :

| $\mathcal{D}_{\kappa}^{(1)}$ | $\mathcal{D}_{\kappa}^{(2)}$ | $\mathcal{D}_{\kappa}^{(3)}$ | $\mathcal{D}_{\kappa}^{(4)}$ | $\mathcal{D}_{\kappa}^{(5)}$ |
|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|
| $P_4$                        | $P_5$                        | $P_1$                        | $P_2$                        | $P_3$                        |
| $Q_4$                        | 1.0                          | * 1                          | $Q_2$                        | $Q_3$                        |
| $P_1$                        | $P_2$                        | $P_3$                        | $P_4$                        | $P_5$                        |
| $Q_3$                        | $Q_4$                        | $P_5$                        | $P_1$                        | $Q_2$                        |
| $P_3$                        | $P_4$                        | 1 5                          | 1 1                          | $P_2$                        |

| $\mathcal{D}_{\kappa}^{(1)}$ | $\mathcal{D}_{\kappa}^{(2)}$ | $\mathcal{D}_{\kappa}^{(3)}$ | $\mathcal{D}_{\kappa}^{(4)}$ | $\mathcal{D}_{\kappa}^{(5)}$ |
|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|
| $Q_4$                        | $P_5$                        | $P_1$ $Q_1$                  | $P_2$                        | $P_3$ $Q_3$                  |
| $P_1$                        | $P_2$                        | $P_3$                        | $P_4$                        | $P_5$                        |
| $Q_3$ $P_3$                  | $Q_4$ $P_4$                  | $P_5$                        | $Q_1$ $P_1$                  | $P_2$                        |

Trois epsilon sont égaux à zero :

| $\mathcal{D}_{\kappa}^{(1)}$ | $\mathcal{D}_{\kappa}^{(2)}$ | $\mathcal{D}_{\kappa}^{(3)}$ | $\mathcal{D}_{\kappa}^{(4)}$ | $\mathcal{D}_{\kappa}^{(5)}$ |
|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|
| $P_4$                        | $Q_5$                        | $P_1$ $Q_1$                  | $P_2$                        | $P_3$                        |
| $P_1$                        | $P_2$                        | $P_3$                        | $P_4$                        | $P_5$                        |
| $P_3$                        | $P_4$                        | $P_5 \ Q_5$                  | $Q_1$ $P_1$                  | $P_2$                        |

|   | $\mathcal{D}_{\kappa}^{(1)}$ | $\mathcal{D}_{\kappa}^{(2)}$           | $\mathcal{D}_{\kappa}^{(3)}$ | $\mathcal{D}_{\kappa}^{(4)}$           | $\mathcal{D}_{\kappa}^{(5)}$ |
|---|------------------------------|----------------------------------------|------------------------------|----------------------------------------|------------------------------|
|   | $P_4$                        | $egin{array}{c} P_5 \ Q_5 \end{array}$ | $P_1$                        | $egin{array}{c} P_2 \ Q_2 \end{array}$ | $P_3$                        |
| Ì | $P_1$                        | $P_2$                                  | $P_3$                        | $P_4$                                  | $P_5$                        |
|   | $P_3$                        | $P_4$                                  | $P_5$ $Q_5$                  | otag                                   | $P_2$                        |

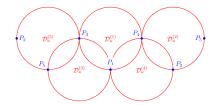
# Trois epsilon sont égaux à zero :

| $\mathcal{D}_{\kappa}^{(1)}$ | $\mathcal{D}_{\kappa}^{(2)}$ | $\mathcal{D}_{\kappa}^{(3)}$           | $\mathcal{D}_{\kappa}^{(4)}$ | $\mathcal{D}_{\kappa}^{(5)}$ |
|------------------------------|------------------------------|----------------------------------------|------------------------------|------------------------------|
| $P_4$                        | $Q_5$                        | $P_1$ $Q_1$                            | $P_2$                        | $P_3$                        |
| $P_1$                        | $P_2$                        | $P_3$                                  | $P_4$                        | $P_5$                        |
| $P_3$                        | $P_4$                        | $egin{array}{c} P_5 \ Q_5 \end{array}$ | $Q_1$ $P_1$                  | $P_2$                        |

| $\mathcal{D}_{\kappa}^{(1)}$ | $\mathcal{D}_{\kappa}^{(2)}$           | $\mathcal{D}_{\kappa}^{(3)}$ | $\mathcal{D}_{\kappa}^{(4)}$           | $\mathcal{D}_{\kappa}^{(5)}$ |
|------------------------------|----------------------------------------|------------------------------|----------------------------------------|------------------------------|
| $P_4$                        | $egin{array}{c} P_5 \ Q_5 \end{array}$ | $P_1$                        | $egin{array}{c} P_2 \ Q_2 \end{array}$ | $P_3$                        |
| $P_1$                        | $P_2$                                  | $P_3$                        | $P_4$                                  | $P_5$                        |
| $P_3$                        | $P_4$                                  | $P_5$ $Q_5$                  | $ otag_2^1 $                           | $P_2$                        |

## Cas non-déformé :

| $\mathcal{D}_{\kappa}^{(1)}$ | $\mathcal{D}_{\kappa}^{(2)}$ | $\mathcal{D}_{\kappa}^{(3)}$ | $\mathcal{D}_{\kappa}^{(4)}$ | $\mathcal{D}_{\kappa}^{(5)}$ |
|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|
| $P_4$                        | $P_5$                        | $P_1$                        | $P_2$                        | $P_3$                        |
| $P_1$                        | $P_2$                        | $P_3$                        | $P_4$                        | $P_5$                        |
| $P_3$                        | $P_4$                        | $P_5$                        | $P_1$                        | $P_2$                        |



Considérons le système périodique de  $Kac\text{-}van\ Moerbeke\ (KM)$  à 5 particules :

$$\dot{x}_i = x_i(x_{i-1} - x_{i+1}), \qquad i = 1, \dots, 5,$$

Considérons le système périodique de  $Kac\text{-}van\ Moerbeke\ (KM)$  à 5 particules :

$$\dot{x}_i = x_i(x_{i-1} - x_{i+1}), \qquad i = 1, \dots, 5,$$

 $\left(\mathbb{C}^5,\{\cdot,\cdot\}_{\rm KM},(G_1,G_2,G_3)\right)$  est un système intégrable au sens de Liouville, où

$$\{x_i, x_j\}_{\text{KM}} := R_{i,j} x_i x_j, \qquad R \equiv (R_{i,j}) := \text{circ}(0, -1, 0, 0, 1),$$
  
 $G_1 := \sum_{i=1}^5 x_i, \quad G_2 := \sum_{i=1}^5 x_i x_{i+2} \text{ et } G_3 := \prod_{i=1}^5 x_i.$ 

Considérons le système périodique de  $Kac\text{-}van\ Moerbeke\ (KM)$  à 5 particules :

$$\dot{x}_i = x_i(x_{i-1} - x_{i+1}), \qquad i = 1, \dots, 5,$$

 $\left(\mathbb{C}^5,\{\cdot,\cdot\}_{\mathrm{KM}},(G_1,G_2,G_3)\right)$  est un système intégrable au sens de Liouville, où

$$\{x_i, x_j\}_{\text{KM}} := R_{i,j} x_i x_j, \qquad R \equiv (R_{i,j}) := \text{circ}(0, -1, 0, 0, 1),$$
  
 $G_1 := \sum_{i=1}^5 x_i, \quad G_2 := \sum_{i=1}^5 x_i x_{i+2} \text{ et } G_3 := \prod_{i=1}^5 x_i.$ 

On a un diagramme comme celui qui suit :

$$\begin{array}{ccc} \mathrm{BI}^{\epsilon} - 5 & \stackrel{\psi}{\longrightarrow} ? \\ & & \mathrm{def} \\ \mathrm{BI} - 5 & \stackrel{\psi}{\longleftrightarrow} \mathrm{KM} - 5 \end{array}$$

Merci de votre attention!