POISSON STRUCTURES

1. HISTORICAL BACKGROUND

Let us recall the Newton’s second law:
Mass x Acceleration = Force.
The force is described by a potential field particle V : R3 — R. Concretely, Force = —VV.

Let us denote by m the mass of the particle and by ¢ = (g1, ¢2, g3) € R? its coordinates position
in the space. Then the equation of motion can be written as

mg=—-VV.

This is a second order differential equation in R? (here, R3 is the configuration space).

In each coordinate:
ov
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mé; = i=1,2,3.

q : velocity of the particle,

p :=m¢ : momentum of the particle.

What Newton really stated:

Force = change in momentum.

Energy of the particle:

H = Kinetic energy + Potential energy
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Another way to write the equations of motion:
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which is a system of first order differential equations on R® (here, R® is the phase space). This
is the same as giving a vector field in R®, hence we have two points of view for the solutions
of this system:

(i) as the time evolution of the system, and

(ii) as integral curves of a vector field.



Let us notice that H is a constant of motion (i.e., H= 0). In effect,
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For any function f : RS — R, what is f?

3
i _N~ (91 0H _0f 0H
f‘;(aqi o 90

Poisson bracket?getween fand H
For any pair of functions f,g: R — R,
3
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im1 q; Op; Pi 0G;
In these terms the equations of motion can be written as follows:
¢ = {qi, H},
pi = {pi, H}.
The property of H being a constant of motion for the mechanical system is an algebraic
manifestation of the skew-symmetry of the Poisson bracket:

{H,H} = H =0.
In fact,

fis a constant of motion < f =0
< {f,H} =0.

Constants of motion are important!

Theorem 1.1 (Poisson’s theorem). If f and g are constants of motion then {f, g} is also a
constant of motion.

In formulas:
ggi ig } = {{f.g}, H} =0.

Jacobi, 30 years later:

{{f.9b, HY + {{H, f}, 9} +{{g, H}, f} = 0. Jacobu identity
What a Poisson bracket would be?
{-,-} is skew-symmetric,
{-,-} satisfies the Jacobi identity,
{-,-} should be a derivation (like a vector field).



2. A BRIEF INTRODUCTION TO POISSON BRACKETS

We are thinking of a Poisson brackt as a map {-,-} : A x A — A, where A is some nice space.

The most reasonable thing to expect is that A be an associative commutative algebra.

Let us fix a ground field F of characteristic zero (think for example on R or C).

Definition 2.1. An algebra over F is an F-vector space A with a bilinear map p: Ax A — A
(i.e., a product). It is said to be

commutative if for every a,b € A, u(b,a) = p(a,b);
associative if for every a,b,c € A, pu(p(a,b),c) = u(a, u(b,c));
unitary if there exists e € A such that for every a € A, u(a,e) = u(e,a) = a.

Example 2.2.

1) Flxy,...,zy], polynomials in n variables (n could be oo). Here, p is the usual product
of polynomials. It is commutative, associative and has a unit.

2) The n x n matrices with matrix multiplication. It is associative, has a unit but it is
not commutative.

3) Functions on R™ or C" (continuous, C*°, polynomial, holomorphic, etc.).

4) Functions on a sphere, S? = {(x,y,2) € R?| 22 + y? + 22 = 1}, or on any variety.

FIGURE 1. 2-sphere.

Some additional definitions:

o Let A be an associative commutative algebra over F. A subset I C A is said to be an
ideal of A if for every a € Aand x € Z, xa =z - a = p(x,a) € I (otherwise written,
I-ACTI). Iisproper if I is different from {0} and A.

o Let A, B be two commutative associative algebras. A linear map ¢ : A — B is said to
be a morphism of algebras if p(a-a’) = ¢(a) - p(d’).

Proposition 2.3.

o If I is a proper ideal of A then A/I has a unique algebra structure such that the
canonical projection 7 : A — A/I is a morphism of algebras.



o If p: A — B is a morphism of algebras then Ker(y¢) := {a € A| p(a) = 0} is an ideal
of A and ¢ factors as

B
A/Ker(p) —— Im(y)
where Im(p) :={b e B|Ja € A, ¢(a) = b}.

Example 2.4.

5) Let fi1,...,fx € A=TF[xy,...,2z,]. The ideal I generated by f1,..., fr (the smallest
one containing each f;) has the form f1 A+ --- + frA. This ideal is denoted by
(fi,--- fx). The quotient algebra

A Flay, ... 2]

I (f1y- s fx)
can be viewed as functions on V(f1,..., fr) ={z € F*"|Vi=1,...,k, fi(z) =0}
IffeA f=f+I1cA/lL
Ifx € V(f1,...,fr) then f(z) = f(z), because A(x) = 0 for every A € I.

Definition 2.5. An algebra (A, 1) is said to be a Lie algebra if
 is skew-symmetric: for all a,b € A, u(b,a) = —pu(a,b),
 satisfies the Jacobi identity: for all a,b,c € A, u(u(a,b),c) + cyclic(a, b, c) = 0.
Here, cyclic(a, b, ¢) indicates that the sum is performed over all cyclic per-

mutations, that is,
(1(a,5), €) + u(ia(e, @), ) + (b, ), a).
It is usual to denote u by [, -] or {-,-}.
A subspace B C A is said to be a

Lie subalgebra if [B,B] C B,
Lie ideal if [B,.A] C B. In addition, B is proper if it is different from {0} and A.

Proposition 2.3 holds in the context of Lie algebras.

Example 2.6.
1) The space of n x n matrices with a new product, the commutator:
[A, B] = AB — BA.
Jacobi identity:
[[4,B],C] = ABC—BAC
[[B,C],A] = BCA —ABC+ACE,
[[C, A], B] = —ACB—-BCA+BAC.



Hence, [[4, B], C] + cyclic(A, B,C) = 0.
2) More generally, for any associative algebra the commutator is a Lie bracket.
3) F3 with the vector product:

al bl agbg — agbg
as| X bg = a3b1 — a1b3
as b3 ajbe — agby

4) The n x n matrices of zero trace form a Lie subalgebra of the Lie algebra in the first

example, because
tr([A, B]) = tr(AB — BA) = tr(AB — AB) = 0.
5) Upper triangular n x n matrices form a Lie subalgebra, hence a Lie subalgebra.
6) In the same way, skew-symmetric matrices (AT = —A). In effect,
[A, B]T = (AB — BA)T = (AB)T — (BA)T

= BTAT ~ ATB" = (-B)(~A) - (~A)(~B)

= BA— AB = —(AB — BA)

= —[A, B].

Derivations and biderivations

Definition 2.7. Let A be an associative commutative algebra. A derivation of A (with values
in A) is a linear map d : A — A such that
d(ab) = 0(a)b+ ad(b).
Example 2.8.
1) Let ¢ € F[z] be any polynomial. The map
D : Flz] — Flz]
[ ef,

is a derivation of F[z].
2) In the same way, let ¢ € Flxy;...,z,] be any polynomial. Then for all i = 1,...,n,

the map
81- Flxy,...,z,] — ]F[a;],c,xn]
is a derivation of F[xy, ..., zy,].
3) All the derivations of F[zy, ..., z,] are of the form

Zgii o Flry,..o,xn] — Flzg, ... 2]




for some ¢g1,...,9n € Flz1,...,2y].

Reason:
Every derivation D of F[x1, ..., z,] is determined by its values on z1, ..., x,.
In fact, for f € F[zy,..., )],
n
of
D(f) = YDl 5
=1
Conversely, for any g1, ..., g9, € F[z1,...,2,] the linear map defined by
n
of
D = ;—
(f) Zgz o
=1
is a derivation of Flxy, ..., z,].
Geometrically:
Fn / bW
f
Remark 2.9.

¢ On a smooth manifold M there is a one to one correspondence between vector fields
and derivations of C*°(M). This is not true for the complex case.
o For a general associative commutative algebra A every derivation is determined by its
values on a set of generators. However the converse is not true.
For example, on the sphere S? = {(z,y,2) € R3| 22 + ¢ + 22 = 1}, every

derivation D must satisfy

xD(z) + yD(y) + 2zD(z) = 0.

Proposition 2.10. The derivations of an associative commutative algebra A forms a Lie

algebra under the commutator.

Proof.
We need to show that if § and p are derivations of A then [§,p] = dop —pod is also a



derivation. In effect, for a,b € A,

18, p] (ab) = 8 0 plab) — p o 5(ab)
= d(p(a)b+ap(b)) — p(6(a)b + ad(b))
=dop(a)b+ pla)i(b) + ad o p(b)
—pod(a)b —p(a)d(b)—ap o &(b)
— (50 p(a) — po (@) b+a(dop(b) — pod(b))
— 16, pl(a) b+ a3, p] (b):
i
Definition 2.11. A biderivation P of an associative commutative algebra A is a bilinear map
P: Ax A— Asatisfying: for any a € A the linear maps
Pl A — A , P2 . A — A
b +— P(a,b) b — P
are derivations of A.
Example 2.12. On F[z,y| the bilinear map
P Flz,yl — Fla,y]
(f,g9) = o Bz By

is a biderivation, for any polynomial ¢ € F[z, y].

Proposition 2.13. Every skew-symmetric biderivation P of F[xy,...,z,] is determined by
its values P(z;,2;) with 1 <1 < j < n. In fact,

P = X Pl (5 g% - 7000

In short,

Remark 2.14. Geometrically, in the case of smooth manifolds skew-symmetric biderivations

correspond to bivector fields.
In the same way one defines multiderivations.

Definition 2.15. A Poisson algebra (A, -, {-,-}) is the data of

A, an F-vector space,

(A,-), an associative commutative algebra with unit,
(A, {-,-}), a Lie algebra,

{-,-}, a biderivation.



Important feature:

For any a € A, X, :=={-,a} : A — A, b+ {b,a} is a derivation of A, called the Hamiltonian
derivation associated to a.
If a € A is such that X, = 0 one says that a is a Casimir (of A).

A subspace B of A is called a Poisson ideal if

B-ACB and {B,A} C B
! \J
B is an ideal of (A, ) B is an ideal of (A, {-,-}).

A is said to be (Poisson) simple if its only Poisson ideals are A and {0}.

A morphism of Poisson algebras ¢ : A — B is a linear map which is an algebra morhpism and
a Li algebra morhpism.

In these lectures we are dealing with polynomial Poisson algebras,
(A=Flzy,...,zn],+,{-,})-

A polynomial Poisson bracket {-,-} is completely determined by ({z;,z;})1<i j<n:

of g
F = XS Syt
OrvaEA’ {f?g} Z {CL‘ x]}axl 81'J
1<i,j<n
So if we define a matrix P = (P ;) by P;; := {x;,z;} then
{f,9} = (VH'P(Vy),
af af T . . ... .
where Vf = (671’ ey E) . In particular, g is a Casimir if and only if P(Vg) = 0.

Warning: Not every choice of {z;,z;} leads to a Poisson bracket as the Jacobi identity may
not be satisfied.

Proposition 2.16. The skew-symmetric biderivation {-, -} defined by
~ ., Of 9y
{fig}= Z i, 87331 Tx]
i,7=1
satisfies the Jacobi identity (hence is a Poisson bracket) if and only if
{{zi, 25}, 2} + cyclic(i, j, k) = 0,

if and only if the Jacobi identity is satisifed for all triplets x;, x;, x) with i < j < k.

Proposition 2.17. As in the case of algebras and Lie algebras, the Kernel of a Poisson
morphism is a Poisson ideal and every Poisson morphism factors into a surjective and an

injective morphisms.



Proposition 2.18. Let 4 be a Poisson algebra.

1) The Casimirs of A form a Poisson subalgebra.

2) The ideal generated by any collection of Casimirs is a Poisson ideal.
Proof.

1) Let ¢ and ¢ be Casimirs of A then {c1,ca} = 0; but also, for any a € A,

{a,c1e0} =1 {a,c2} +{a,c1} ca =0,
0 0

thus ¢j ¢g is a Casimir of A.

2) Let T = (¢j)jes € A, where all ¢; are Casimirs. For x € T we have x = )z, ¢;, for
some z; € A and where all but finitely of them are zero. We need to show that for
any a € A, {z,a} €Z.

{z,a} = {Z%‘ CJ"“} =2 _twiej,a)
= Z (z{cj,a} +{xj,a} c;)
= Z{xj,a} Cj S Ia

where we have used that {c;,a} = 0 since ¢; is a Casimir of A, for all j € J.

Example 2.19.

1) Let V be an F-vector space with a skew-symmetric bilinear form o : V x V — F. Let
A =Sym(V) ~ Flzy,...,x,], if we suppose that V is generated by z1,...,Z,.
o extends to a unique (skew-symmetric) biderivation of A: {z;, z;} = o (x4, ;).
In order to check the Jacobi identity it is enough to do it for triplets z;, x;, . In
effect,

{{zi, x5}, 2} + cyclic(i, j, k) = 0,
since {x;,x;} € F and then {{z;,z;}, 21} = 0.
1) Let g be a Lie algebra. On Sym(g) a Poisson structure is defined as follows:
For z,y € g define {z,y} := [z, y] and extend {-,-} to a biderivation.
For monomials x = w1 -+ &y, and y = y1 - - - yp, this gives
{z,y} = Z[wi,yﬂwl--'fi-'-xmyr--@j--'yn-

e N—~——

Z?] Gg
The Jacobi identity for g then implies the corresponding one for Sym(g).

Taking Z = (g) C Sym(g) we get a non-trivial proper ideal of Sym(g).



3) (Combination of the previous two examples) If g is a Lie algebra and o : g x g — F is

bilinear, skew-symmetric and satisfies
o([xi, ], xx) + cyclic(i, j, k) = 0, for every x;, 5,2 € g,
then Sym(g) is a Poisson algebra with

{wi, 25} = [, 25] + o (24, 25).

4) Let p,¢ € A :=F[x,y, z], with ¢ # 0 and ¥ ¢ F. On A a Poisson bracket is defined

by

0 0 0
() =v5e A =pGh {nsh=vy.

The only thing to check is that {{z,y}, z} + cyclic(x,y, z) = 0. A direct computation

shows:

” }d_:(&ﬁa(wj_&ba(w))+fw<mww_&ww>
WA= \ar oy \ 0z )~ By 0z \ 92 P9, \oxr ay oy oz )’
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which sums zero after canceling out by pairs and use the equality of the mixed partial
derivatives for the first column terms.
This bracket is called a Nambu-Poisson bracket. For f, g € Flz,y, z] one has:

of o9 W
or Ox Oz
of 0dg oY
of 99
0z 0z Oz

so 1 is a non-constant Casimir of {-,-}. Consequently this Nambu-Poisson algebra is

not simple.

5) (Generalization) Let @, ¢s,..., ¥, € A:=Fxy,...,z,]. For f,g € Flxy,...,z,],

of 99 Oys = On
Oox1 Oz Ox1 0x1
of 99 s O
ox, Ox, Ox, Oxy,
defines a Poisson bracket, where s, ..., 1, are Casimirs. Hence this Poisson algebra

is never simple.



6) Let A = (a;;) be a skew-symmetric matrix with entries in F. For f,g € A :=
Flx1,...,z,] we can define
af 0Og
{f.ot = > ajzizj— -,
1<ij<n Oz Oz;
i.e., {xi,x;} = a;; x;x;. This is known as a diagonal (quadratic) Poisson bracket. To
check the Jacobi identity notice that
s,z on} = (a5 ajr — aji air) x xj g,
from where {{z;,z;},z1} + cyclic(4, j, k) = 0 easily follows.
7) On Clz,y, 2] take

{x,y}=z7 {y,z}:x, {Z,l’}:y,

that is, the Nambu-Poisson bracket with ¢ = 1 and ¢ = 1 (2% + y* + 2%). As before,
¢ is a Casimir. The ideal () is a Poisson ideal, then the nilpotent cone

(Clz,y, 2], {,-})
(22 4+ y? + 22)

is equipped with a Poisson structure.

F1GURE 2. Nilpotent cone.

Poisson manifolds

Definition 2.20. A Poisson manifold is a manifold M for which C*°(M) is eaquipped with
a Poisson bracket.

Example 2.21.

e Let (M,w) be a symplectic manifold, i.e., w is a closed 2-form which is non-degenerate.
To each f € C*(M) a vector field X is assigned:

w(Xy,-) =df.
A Poisson bracket on C*°(M) is defined by
{f.9} = w(Xy, Xy), forf,geC>(M).



It turns out that a bracket defined as above satisfies the Jacobi identity if and only if

w is a closed 2-form (i.e., dw = 0).

Take for example M = R?" with coordinates 1, ..., Zn, Y1, ..., Yn, and the 2-form
n
w = Z dx; Ndy;.
i=1

(R?", w) is a symplectic manifold and the Poisson bracket looks like

_N~(9f 99 _ 9 99 oo (R20

Definition 2.22. A Lie-Poisson group is a Lie group G equipped with a Poisson structure

such that
GxG — G

(g,h) = gh

is a Poisson map.

Application: deformation of commutative algebras

Let us fix some notation:

e A: commutative algebra with unit over F (a field of characteristic zero).
e v: formal parameter.

o A = A[[v]], and F¥ = F[[v]]: formal power series.

Definition 2.23. A formal deformation of A is an F” (associative) algebra structure x on A"
such that for f,g € A C A",

frg=F-g+> m(f.9)v"
i>0
So ¢ = 0 gives back to the original product.

Let us suppose that * exists, and in order to simplify the discussion, let us suppose further
that m; is skew-symmetric.
For f,ge ACA, fxg=f-g+m(f,9)v+0OW?).

[l i=Frg—gxf
=mi(f.9)v—m(g, [)v+OW?)
=2m(f.g)v+O@W?).
Since « is associative then [-, |, is a Lie bracket, so the Jacobi identity holds.
0 = [[f, glx; B« + cyclic(f, g, h)
= 2m(f,9)v + OW?), hl. + cyclic(f, g, h)
=4m(m(f,g),h)v? + OW?) + cyclic(f, g, ).



In particular,
m(mi(f, 9), k) + cyclic(f, g, h) = 0,

thus 7 is a Lie bracket.

What does the associativity of x imply for m?
(fxg)xh=fx(g*h),
= (fg+m(f,9)v+O@W?) *h=f*(gh+m(g,h)v+O@F?)
= fgh+ (m1(f,9)h +mi(fg,h)) v+ O@W?) = fgh+ (mi(g,h) - f + m1(f, gh)) v + O(?)
= m1(f,9)h — mi(f,gh) + m1(fg,h) — m1(g, h)f = 0. (2.1)

After making the cyclic permutation f — g — h in (2.1),

m1(g, h)f — m(g, hf) + mi(gh, f) — mi(h, f)g = 0. (2.2)

Substracting (2.2) from (2.1) and reordering terms one obtains:

Wl(f,gh) = ﬂl(fmg)h + 7Tl(f? h)ga
which means that 7 is a biderivation, hence it is a Poisson bracket.

In general, the skew-symmetric part of 71, 7, is a Poisson bracket.

In view of the above, several questions arise:

o Does associativity imply other conditions on ;, for 7 > 07
o Given a Poisson algebra (A, -, {-,-}), does there exist a deformation of A such that

frg=f-g+3{f.ar+00?)?
Answer by Kontsevich in 1992: yes if A is smooth (i.e., Q!(A) is projective over A).

Similar questions:

o Can one deform {-,-}7
o A viewed as a commutative algebra over F”; is {-, -}, = >~ 27 {+, -} v an F”-Poisson
bracket?

Poisson cohomology

Let (A, -, {-,-}) be a Poisson algebra. A p-derivation on A is a p-linear map P : AP — A which
is a derivation in each argument. Let us define

XP(A):={P: AP — A| Pis a skew-symmetric p-derivation}.

On X*(A) := @ XP(A) there are two operations:
p=0



> Wedge product: for P € XP(A) and Q € X9(A), P A Q is defined by
P A Q(fb cee fp—l—q) = Z sign(a) P(fa(l)v s afa(p)) Q(fa(p-‘rl): R fa(p+q))7

0€Sp.q
where S, , denotes the set of shuffle permutations of {1,2,...,p+ ¢}, that is, permu-
tations which satisfy
o(l)y<o(2)<---<o(p), and op+1)<op+2)<---<oa(p+q).
It can be checked that P A Q € XPTI(A).
> Schouten bracket: for P € XP(A) and Q € X%(A), [P, Q)]s is defined by

[P7 Q]S(fh RS fp+q—1) = Z Sign(U)P(Q(fa(l)a SRR fa(q))v fa(qul)? ce fO’(p+l]*1))

0€Syp—1

=+ Z Sign(U)Q(P(fU(l)a ) fo(p))7 fo‘(p—i-l)v cee 7fo‘(p+q—1))'

0€Sp,q—1

It can also be checked that [P, Q]s € XPT1=1(A).
With the above operations it turns out that (X*(.A), [, ]s) is a graded Lie algebra.

Remark 2.24. For P € X%(A), [P, P]s = 0 if and only if P satisfies the Jacobi identity.

The graded Jacobi identity:
(1)@= DEI[P, Qls, R]s + cyclic(P, Q, R) = 0,
for every P € XP(A), Q € X9(A) and R € X"(A).
If IT € X2%(A) is a Poisson structure on A, i.e., [II,1[]g = 0, then from the graded Jacobi
identity we get
1L, [IL, P]s]s = 0,
for every P € XP(A). Thus if we define &y : X*(A) — X*T1(A) by on(P) := [II, Plg, the last

equation can be written as ér; o o = 0. Consequently we obtain a cochain complex whose
homology is called the Poisson cohomology of A.
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