## POISSON STRUCTURES

### 1. HISTORICAL BACKGROUND

Let us recall the Newton's second law:

 $Mass \times Acceleration = Force.$ 

The force is described by a potential field particle  $V : \mathbb{R}^3 \to \mathbb{R}$ . Concretely,  $Force = -\nabla V$ .

Let us denote by m the mass of the particle and by  $q = (q_1, q_2, q_3) \in \mathbb{R}^3$  its coordinates position in the space. Then the equation of motion can be written as

$$m \ddot{q} = -\nabla V.$$

This is a second order differential equation in  $\mathbb{R}^3$  (here,  $\mathbb{R}^3$  is the *configuration space*). In each coordinate:

$$m \ddot{q}_i = -\frac{\partial V}{\partial q_i}, \qquad i = 1, 2, 3.$$

 $\dot{q}$ : velocity of the particle,

 $p := m \dot{q}$ : momentum of the particle.

What Newton really stated:

$$Force = change in momentum.$$

Energy of the particle:

H = Kinetic energy + Potential energy

$$= \frac{1}{2}m\sum_{i=1}^{3}q_i^2 + V(q)$$
$$= \frac{1}{2m}\sum_{i=1}^{3}p_i^2 + V(q).$$

Another way to write the equations of motion:

$$\left\{ \begin{array}{l} \dot{q}_i = \frac{\partial H}{\partial p_i}, \\ \\ \dot{p}_i = -\frac{\partial H}{\partial q_i}, \end{array} \right.$$

which is a system of first order differential equations on  $\mathbb{R}^6$  (here,  $\mathbb{R}^6$  is the *phase space*). This is the same as giving a vector field in  $\mathbb{R}^6$ , hence we have two points of view for the solutions of this system:

- (i) as the time evolution of the system, and
- (ii) as integral curves of a vector field.

Let us notice that H is a constant of motion (i.e.,  $\dot{H} = 0$ ). In effect,

$$\dot{H} = \sum_{i=1}^{3} \left( \frac{\partial H}{\partial q_i} \dot{q}_i + \frac{\partial H}{\partial p_i} p_i \right)$$
$$= \sum_{i=1}^{3} \left( \frac{\partial H}{\partial q_i} \frac{\partial H}{\partial p_i} - \frac{\partial H}{\partial p_i} \frac{\partial H}{\partial q_i} \right) = 0$$

For any function  $f : \mathbb{R}^6 \to \mathbb{R}$ , what is  $\dot{f}$ ?

Poisson bracket between f and H

For any pair of functions  $f, g: \mathbb{R}^6 \to \mathbb{R}$ ,

$$\{f,g\} := \sum_{i=1}^{3} \left( \frac{\partial f}{\partial q_i} \frac{\partial g}{\partial p_i} - \frac{\partial f}{\partial p_i} \frac{\partial g}{\partial q_i} \right).$$

In these terms the equations of motion can be written as follows:

$$\begin{cases} \dot{q}_i = \{q_i, H\}, \\ \dot{p}_i = \{p_i, H\}. \end{cases}$$

The property of H being a constant of motion for the mechanical system is an algebraic manifestation of the skew-symmetry of the Poisson bracket:

$$\{H, H\} = H = 0.$$

In fact,

$$f$$
 is a constant of motion  $\Leftrightarrow \dot{f} = 0$   
 $\Leftrightarrow \{f, H\} = 0.$ 

Constants of motion are important!

**Theorem 1.1** (Poisson's theorem). If f and g are constants of motion then  $\{f, g\}$  is also a constant of motion.

In formulas:

$$\{f, H\} = 0 \{g, H\} = 0$$
  $\} \Rightarrow \{\{f, g\}, H\} = 0.$ 

Jacobi, 30 years later:

$$\{\{f,g\},H\} + \{\{H,f\},g\} + \{\{g,H\},f\} = 0.$$
 Jacobi identity

What a Poisson bracket would be?

 $\{\cdot, \cdot\}$  is skew-symmetric,

 $\{\cdot,\cdot\}$  satisfies the Jacobi identity,

 $\{\cdot,\cdot\}$  should be a derivation (like a vector field).

#### 2. A BRIEF INTRODUCTION TO POISSON BRACKETS

We are thinking of a Poisson brackt as a map  $\{\cdot, \cdot\} : \mathcal{A} \times \mathcal{A} \to \mathcal{A}$ , where  $\mathcal{A}$  is some *nice* space. The most reasonable thing to expect is that  $\mathcal{A}$  be an *associative commutative algebra*.

Let us fix a ground field  $\mathbb{F}$  of characteristic zero (think for example on  $\mathbb{R}$  or  $\mathbb{C}$ ).

**Definition 2.1.** An algebra over  $\mathbb{F}$  is an  $\mathbb{F}$ -vector space  $\mathcal{A}$  with a bilinear map  $\mu : \mathcal{A} \times \mathcal{A} \to \mathcal{A}$  (*i.e.*, a product). It is said to be

commutative if for every  $a, b \in \mathcal{A}$ ,  $\mu(b, a) = \mu(a, b)$ ; associative if for every  $a, b, c \in \mathcal{A}$ ,  $\mu(\mu(a, b), c) = \mu(a, \mu(b, c))$ ; unitary if there exists  $e \in \mathcal{A}$  such that for every  $a \in \mathcal{A}$ ,  $\mu(a, e) = \mu(e, a) = a$ .

#### Example 2.2.

- 1)  $\mathbb{F}[x_1, \ldots, x_n]$ , polynomials in *n* variables (*n* could be  $\infty$ ). Here,  $\mu$  is the usual product of polynomials. It is commutative, associative and has a unit.
- 2) The  $n \times n$  matrices with matrix multiplication. It is associative, has a unit but it is not commutative.
- 3) Functions on  $\mathbb{R}^n$  or  $\mathbb{C}^n$  (continuous,  $\mathcal{C}^{\infty}$ , polynomial, holomorphic, etc.).
- 4) Functions on a sphere,  $\mathbb{S}^2 = \{(x, y, z) \in \mathbb{R}^3 \mid x^2 + y^2 + z^2 = 1\}$ , or on any variety.

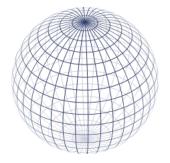


FIGURE 1. 2-sphere.

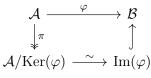
Some additional definitions:

- ◇ Let  $\mathcal{A}$  be an associative commutative algebra over  $\mathbb{F}$ . A subset  $I \subseteq \mathcal{A}$  is said to be an ideal of  $\mathcal{A}$  if for every  $a \in \mathcal{A}$  and  $x \in \mathcal{I}$ ,  $x a \equiv x \cdot a \equiv \mu(x, a) \in I$  (otherwise written,  $I \cdot A \subseteq I$ ). I is proper if I is different from  $\{0\}$  and  $\mathcal{A}$ .
- ♦ Let  $\mathcal{A}, \mathcal{B}$  be two commutative associative algebras. A linear map  $\varphi : \mathcal{A} \to \mathcal{B}$  is said to be a morphism of algebras if  $\varphi(a \cdot a') = \varphi(a) \cdot \varphi(a')$ .

#### Proposition 2.3.

 $\diamond$  If *I* is a proper ideal of  $\mathcal{A}$  then  $\mathcal{A}/I$  has a unique algebra structure such that the canonical projection  $\pi : \mathcal{A} \to \mathcal{A}/I$  is a morphism of algebras.

♦ If  $\varphi : \mathcal{A} \to \mathcal{B}$  is a morphism of algebras then  $\operatorname{Ker}(\varphi) := \{a \in \mathcal{A} \mid \varphi(a) = 0\}$  is an ideal of  $\mathcal{A}$  and  $\varphi$  factors as



where  $\operatorname{Im}(\varphi) := \{ b \in \mathcal{B} \mid \exists a \in \mathcal{A}, \varphi(a) = b \}.$ 

# Example 2.4.

5) Let  $f_1, \ldots, f_k \in \mathcal{A} = \mathbb{F}[x_1, \ldots, x_n]$ . The ideal *I* generated by  $f_1, \ldots, f_k$  (the smallest one containing each  $f_j$ ) has the form  $f_1\mathcal{A} + \cdots + f_k\mathcal{A}$ . This ideal is denoted by  $\langle f_1, \ldots, f_k \rangle$ . The quotient algebra

$$\frac{\mathcal{A}}{I} = \frac{\mathbb{F}[x_1, \dots, x_n]}{\langle f_1, \dots, f_k \rangle}$$

can be viewed as functions on  $V(f_1, \ldots, f_k) = \{x \in \mathbb{F}^n \mid \forall i = 1, \ldots, k, \quad f_i(x) = 0\}.$ If  $f \in \mathcal{A}, \ \bar{f} = f + I \in \mathcal{A}/I.$ If  $x \in V(f_1, \ldots, f_k)$  then  $\bar{f}(x) = f(x)$ , because  $\lambda(x) = 0$  for every  $\lambda \in I$ .

## **Definition 2.5.** An algebra $(\mathcal{A}, \mu)$ is said to be a Lie algebra if

 $\mu$  is skew-symmetric: for all  $a, b \in \mathcal{A}, \ \mu(b, a) = -\mu(a, b),$ 

 $\mu$  satisfies the Jacobi identity: for all  $a, b, c \in \mathcal{A}$ ,  $\mu(\mu(a, b), c) + \operatorname{cyclic}(a, b, c) = 0$ . Here,  $\operatorname{cyclic}(a, b, c)$  indicates that the sum is performed over all cyclic permutations, that is,

 $\mu(\mu(a, b), c) + \mu(\mu(c, a), b) + \mu(\mu(b, c), a).$ 

It is usual to denote  $\mu$  by  $[\cdot, \cdot]$  or  $\{\cdot, \cdot\}$ .

A subspace  $\mathcal{B} \subseteq \mathcal{A}$  is said to be a

Lie subalgebra if  $[\mathcal{B}, \mathcal{B}] \subseteq \mathcal{B}$ ,

Lie ideal if  $[\mathcal{B}, \mathcal{A}] \subseteq \mathcal{B}$ . In addition,  $\mathcal{B}$  is proper if it is different from  $\{0\}$  and  $\mathcal{A}$ .

Proposition 2.3 holds in the context of Lie algebras.

#### Example 2.6.

1) The space of  $n \times n$  matrices with a new product, the commutator:

$$[A,B] = AB - BA.$$

Jacobi identity:

$$\begin{split} & [[A,B],C] = ABC - BAC - CAB + CBA, \\ & [[B,C],A] = BCA - CBA - ABC + ACB, \\ & [[C,A],B] = CAB - ACB - BCA + BAC. \end{split}$$

Hence,  $[[A, B], C] + \operatorname{cyclic}(A, B, C) = 0.$ 

- 2) More generally, for any associative algebra the commutator is a Lie bracket.
- 3)  $\mathbb{F}^3$  with the vector product:

$$\begin{bmatrix} a_1\\a_2\\a_3 \end{bmatrix} \times \begin{bmatrix} b_1\\b_2\\b_3 \end{bmatrix} = \begin{bmatrix} a_2b_3 - a_3b_2\\a_3b_1 - a_1b_3\\a_1b_2 - a_2b_1 \end{bmatrix}$$

4) The  $n \times n$  matrices of zero trace form a Lie subalgebra of the Lie algebra in the first example, because

$$\operatorname{tr}([A,B]) = \operatorname{tr}(AB - BA) = \operatorname{tr}(AB - AB) = 0.$$

- 5) Upper triangular  $n \times n$  matrices form a Lie subalgebra, hence a Lie subalgebra.
- 6) In the same way, skew-symmetric matrices  $(A^T = -A)$ . In effect,

$$[A, B]^{T} = (AB - BA)^{T} = (AB)^{T} - (BA)^{T}$$
  
=  $B^{T}A^{T} - A^{T}B^{T} = (-B)(-A) - (-A)(-B)$   
=  $BA - AB = -(AB - BA)$   
=  $-[A, B].$ 

### Derivations and biderivations

**Definition 2.7.** Let  $\mathcal{A}$  be an associative commutative algebra. A derivation of  $\mathcal{A}$  (with values in  $\mathcal{A}$ ) is a linear map  $\delta : \mathcal{A} \to \mathcal{A}$  such that

$$\delta(ab) = \delta(a)b + a\delta(b).$$

# Example 2.8.

1) Let  $\varphi \in \mathbb{F}[x]$  be any polynomial. The map

$$\begin{aligned} \mathcal{D} &: & \mathbb{F}[x] & \longrightarrow & \mathbb{F}[x] \\ & f & \mapsto & \varphi f', \end{aligned}$$

is a derivation of  $\mathbb{F}[x]$ .

2) In the same way, let  $\varphi \in \mathbb{F}[x_1; \ldots, x_n]$  be any polynomial. Then for all  $i = 1, \ldots, n$ , the map

$$\frac{\partial}{\partial x_i} : \mathbb{F}[x_1, \dots, x_n] \longrightarrow \mathbb{F}[x_1, \dots, x_n]$$
$$f \mapsto \varphi \frac{\partial f}{\partial x_i},$$

is a derivation of  $\mathbb{F}[x_1,\ldots,x_n]$ .

3) All the derivations of  $\mathbb{F}[x_1, \ldots, x_n]$  are of the form

$$\sum_{i=1}^{n} g_i \frac{\partial}{\partial x_i} : \mathbb{F}[x_1, \dots, x_n] \longrightarrow \mathbb{F}[x_1, \dots, x_n]$$
$$f \mapsto \sum_{i=1}^{n} g_i \frac{\partial f}{\partial x_i},$$

for some  $g_1, \ldots, g_n \in \mathbb{F}[x_1, \ldots, x_n]$ .

## Reason:

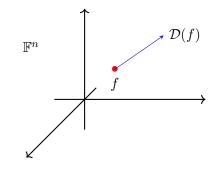
Every derivation  $\mathcal{D}$  of  $\mathbb{F}[x_1, \ldots, x_n]$  is determined by its values on  $x_1, \ldots, x_n$ . In fact, for  $f \in \mathbb{F}[x_1, \ldots, x_n]$ ,

$$\mathcal{D}(f) = \sum_{i=1}^{n} \mathcal{D}(x_i) \, \frac{\partial f}{\partial x_i}.$$

Conversely, for any  $g_1, \ldots, g_n \in \mathbb{F}[x_1, \ldots, x_n]$  the linear map defined by

$$\mathcal{D}(f) := \sum_{i=1}^{n} g_i \, \frac{\partial f}{\partial x_i}$$

is a derivation of  $\mathbb{F}[x_1, \ldots, x_n]$ . Geometrically:





- $\diamond$  On a smooth manifold M there is a one to one correspondence between vector fields and derivations of  $\mathcal{C}^{\infty}(M)$ . This is not true for the complex case.
- $\diamond$  For a general associative commutative algebra  $\mathcal{A}$  every derivation is determined by its values on a set of generators. However the converse is not true.

For example, on the sphere  $\mathbb{S}^2 = \{(x, y, z) \in \mathbb{R}^3 \mid x^2 + y^2 + z^2 = 1\}$ , every derivation  $\mathcal{D}$  must satisfy

$$x\mathcal{D}(x) + y\mathcal{D}(y) + z\mathcal{D}(z) = 0.$$

**Proposition 2.10.** The derivations of an associative commutative algebra  $\mathcal{A}$  forms a Lie algebra under the commutator.

#### Proof.

We need to show that if  $\delta$  and  $\rho$  are derivations of  $\mathcal{A}$  then  $[\delta, \rho] = \delta \circ \rho - \rho \circ \delta$  is also a

derivation. In effect, for  $a, b \in \mathcal{A}$ ,

$$\begin{split} [\delta,\rho](ab) &= \delta \circ \rho(ab) - \rho \circ \delta(ab) \\ &= \delta(\rho(a)b + a\rho(b)) - \rho(\delta(a)b + a\delta(b)) \\ &= \delta \circ \rho(a)b + \rho(a)\delta(b) + \delta(a)\rho(b) + a\delta \circ \rho(b) \\ &- \rho \circ \delta(a)b - \delta(a)\rho(b) - \rho(a)\delta(b) - a\rho \circ \delta(b) \\ &= (\delta \circ \rho(a) - \rho \circ \delta(a)) b + a (\delta \circ \rho(b) - \rho \circ \delta(b)) \\ &= [\delta,\rho](a) b + a [\delta,\rho](b). \end{split}$$

**Definition 2.11.** A biderivation P of an associative commutative algebra  $\mathcal{A}$  is a bilinear map  $P: \mathcal{A} \times \mathcal{A} \to \mathcal{A}$  satisfying: for any  $a \in \mathcal{A}$  the linear maps

are derivations of  $\mathcal{A}$ .

**Example 2.12.** On  $\mathbb{F}[x, y]$  the bilinear map

$$\begin{array}{rcccc} P & : & \mathbb{F}[x,y] & \longrightarrow & \mathbb{F}[x,y] \\ & & (f,g) & \mapsto & \varphi \, \frac{\partial f}{\partial x} \, \frac{\partial g}{\partial y} \end{array}$$

is a biderivation, for any polynomial  $\varphi \in \mathbb{F}[x, y]$ .

**Proposition 2.13.** Every skew-symmetric biderivation P of  $\mathbb{F}[x_1, \ldots, x_n]$  is determined by its values  $P(x_i, x_j)$  with  $1 \le i < j \le n$ . In fact,

$$P(f,g) = \sum_{1 \le i < j \le n} P(x_i, x_j) \left( \frac{\partial f}{\partial x_i} \frac{\partial g}{\partial x_j} - \frac{\partial f}{\partial x_j} \frac{\partial g}{\partial x_i} \right).$$

In short,

$$P = \sum_{1 \le i < j \le n} P(x_i, x_j) \frac{\partial}{\partial x_i} \wedge \frac{\partial}{\partial x_j}.$$

*Remark* 2.14. Geometrically, in the case of smooth manifolds skew-symmetric biderivations correspond to bivector fields.

In the same way one defines multiderivations.

**Definition 2.15.** A Poisson algebra  $(\mathcal{A}, \cdot, \{\cdot, \cdot\})$  is the data of

 $\mathcal{A}$ , an  $\mathbb{F}$ -vector space,  $(\mathcal{A}, \cdot)$ , an associative commutative algebra with unit,  $(\mathcal{A}, \{\cdot, \cdot\})$ , a Lie algebra,  $\{\cdot, \cdot\}$ , a biderivation.

#### Important feature:

For any  $a \in \mathcal{A}$ ,  $X_a := \{\cdot, a\} : \mathcal{A} \to \mathcal{A}$ ,  $b \mapsto \{b, a\}$  is a derivation of  $\mathcal{A}$ , called the Hamiltonian derivation associated to a.

If  $a \in \mathcal{A}$  is such that  $X_a = 0$  one says that a is a Casimir (of  $\mathcal{A}$ ).

A subspace  $\mathcal{B}$  of  $\mathcal{A}$  is called a Poisson ideal if

$$\begin{array}{ccc} \mathcal{B} \cdot \mathcal{A} \subseteq \mathcal{B} & \text{and} & \{\mathcal{B}, \mathcal{A}\} \subseteq \mathcal{B} \\ \downarrow & \downarrow \\ \mathcal{B} \text{ is an ideal of } (\mathcal{A}, \cdot) & \mathcal{B} \text{ is an ideal of } (\mathcal{A}, \{\cdot, \cdot\}). \end{array}$$

 $\mathcal{A}$  is said to be (Poisson) simple if its only Poisson ideals are  $\mathcal{A}$  and  $\{0\}$ .

A morphism of Poisson algebras  $\varphi : \mathcal{A} \to \mathcal{B}$  is a linear map which is an algebra morphism and a Li algebra morphism.

In these lectures we are dealing with polynomial Poisson algebras,

$$(\mathcal{A} = \mathbb{F}[x_1, \dots, x_n], +, \{\cdot, \cdot\}).$$

A polynomial Poisson bracket  $\{\cdot, \cdot\}$  is completely determined by  $(\{x_i, x_j\})_{1 \le i, j \le n}$ :

For 
$$f, g \in \mathcal{A}$$
,  $\{f, g\} = \sum_{1 \le i, j \le n} \{x_i, x_j\} \frac{\partial f}{\partial x_i} \frac{\partial g}{\partial x_j}$ 

So if we define a matrix  $P = (P_{i,j})$  by  $P_{i,j} := \{x_i, x_j\}$  then

$$\{f,g\} = (\nabla f)^T P(\nabla g),$$

where  $\nabla f = \left(\frac{\partial f}{\partial x_1}, \dots, \frac{\partial f}{\partial x_n}\right)^T$ . In particular, g is a Casimir if and only if  $P(\nabla g) = 0$ .

**Warning:** Not every choice of  $\{x_i, x_j\}$  leads to a Poisson bracket as the Jacobi identity may not be satisfied.

**Proposition 2.16.** The skew-symmetric biderivation  $\{\cdot, \cdot\}$  defined by

$$\{f,g\} = \sum_{i,j=1}^{n} P_{i,j} \frac{\partial f}{\partial x_i} \frac{\partial g}{\partial x_j}$$

satisfies the Jacobi identity (hence is a Poisson bracket) if and only if

$$\{\{x_i, x_j\}, x_k\} + \operatorname{cyclic}(i, j, k) = 0,$$

if and only if the Jacobi identity is satisifed for all triplets  $x_i, x_j, x_k$  with i < j < k.

**Proposition 2.17.** As in the case of algebras and Lie algebras, the Kernel of a Poisson morphism is a Poisson ideal and every Poisson morphism factors into a surjective and an injective morphisms.

**Proposition 2.18.** Let  $\mathcal{A}$  be a Poisson algebra.

- 1) The Casimirs of  $\mathcal{A}$  form a Poisson subalgebra.
- 2) The ideal generated by any collection of Casimirs is a Poisson ideal.

### Proof.

1) Let  $c_1$  and  $c_2$  be Casimirs of  $\mathcal{A}$  then  $\{c_1, c_2\} = 0$ ; but also, for any  $a \in \mathcal{A}$ ,

$$\{a, c_1 c_2\} = c_1 \underbrace{\{a, c_2\}}_{0} + \underbrace{\{a, c_1\}}_{0} c_2 = 0,$$

thus  $c_1 c_2$  is a Casimir of  $\mathcal{A}$ .

2) Let  $\mathcal{I} = \langle c_j \rangle_{j \in J} \subseteq \mathcal{A}$ , where all  $c_j$  are Casimirs. For  $x \in \mathcal{I}$  we have  $x = \sum x_j c_j$ , for some  $x_j \in \mathcal{A}$  and where all but finitely of them are zero. We need to show that for any  $a \in \mathcal{A}$ ,  $\{x, a\} \in \mathcal{I}$ .

$$\{x, a\} = \left\{ \sum x_j c_j, a \right\} = \sum \{x_j c_j, a\}$$
$$= \sum (x_j \{c_j, a\} + \{x_j, a\} c_j)$$
$$= \sum \{x_j, a\} c_j \in \mathcal{I},$$

where we have used that  $\{c_i, a\} = 0$  since  $c_j$  is a Casimir of  $\mathcal{A}$ , for all  $j \in J$ .

#### $\checkmark$

### Example 2.19.

1) Let  $\mathcal{V}$  be an  $\mathbb{F}$ -vector space with a skew-symmetric bilinear form  $\sigma : \mathcal{V} \times \mathcal{V} \to \mathbb{F}$ . Let  $\mathcal{A} = \operatorname{Sym}(\mathcal{V}) \simeq \mathbb{F}[x_1, \ldots, x_n]$ , if we suppose that  $\mathcal{V}$  is generated by  $x_1, \ldots, x_n$ .  $\sigma$  extends to a unique (skew-symmetric) biderivation of  $\mathcal{A}$ :  $\{x_i, x_j\} := \sigma(x_i, x_j)$ . In order to check the Jacobi identity it is enough to do it for triplets  $x_i, x_j, x_k$ . In effect,

$$\{\{x_i, x_j\}, x_k\} + \operatorname{cyclic}(i, j, k) = 0,$$

since  $\{x_i, x_j\} \in \mathbb{F}$  and then  $\{\{x_i, x_j\}, x_k\} = 0$ .

 Let g be a Lie algebra. On Sym(g) a Poisson structure is defined as follows: For x, y ∈ g define {x, y} := [x, y] and extend {·, ·} to a biderivation.

For monomials  $\underline{x} = x_1 \cdots x_m$  and  $y = y_1 \cdots y_n$  this gives

$$\{\underline{x},\underline{y}\} = \sum_{i,j} \underbrace{[x_i, y_j]}_{\in \mathfrak{g}} x_1 \cdots \widehat{x}_i \cdots x_m y_1 \cdots \widehat{y}_j \cdots y_n.$$

The Jacobi identity for  $\mathfrak{g}$  then implies the corresponding one for  $Sym(\mathfrak{g})$ .

Taking  $\mathcal{I} = \langle \mathfrak{g} \rangle \subseteq \operatorname{Sym}(\mathfrak{g})$  we get a non-trivial proper ideal of  $\operatorname{Sym}(\mathfrak{g})$ .

3) (Combination of the previous two examples) If  $\mathfrak{g}$  is a Lie algebra and  $\sigma : \mathfrak{g} \times \mathfrak{g} \to \mathbb{F}$  is bilinear, skew-symmetric and satisfies

 $\sigma([x_i, x_j], x_k) + \operatorname{cyclic}(i, j, k) = 0, \quad \text{for every } x_i, x_j, x_k \in \mathfrak{g},$ 

then  $\operatorname{Sym}(\mathfrak{g})$  is a Poisson algebra with

$$\{x_i, x_j\} := [x_i, x_j] + \sigma(x_i, x_j)$$

4) Let  $\varphi, \psi \in \mathcal{A} := \mathbb{F}[x, y, z]$ , with  $\varphi \neq 0$  and  $\psi \notin \mathbb{F}$ . On  $\mathcal{A}$  a Poisson bracket is defined by

$$\{x,y\}=\varphi\,\frac{\partial\psi}{\partial z},\quad \{y,z\}=\varphi\,\frac{\partial\psi}{\partial x},\quad \{z,x\}=\varphi\,\frac{\partial\psi}{\partial y}.$$

The only thing to check is that  $\{\{x, y\}, z\} + \operatorname{cyclic}(x, y, z) = 0$ . A direct computation shows:

$$\{\{x,y\},z\} = \varphi^2 \left(\frac{\partial\psi}{\partial x}\frac{\partial}{\partial y}\left(\frac{\partial\psi}{\partial z}\right) - \frac{\partial\psi}{\partial y}\frac{\partial}{\partial x}\left(\frac{\partial\psi}{\partial z}\right)\right) + \varphi \frac{\partial\psi}{\partial z}\left(\frac{\partial\psi}{\partial x}\frac{\partial\varphi}{\partial y} - \frac{\partial\psi}{\partial y}\frac{\partial\varphi}{\partial x}\right), \\ \{\{y,z\},x\} = \varphi^2 \left(\frac{\partial\psi}{\partial y}\frac{\partial}{\partial z}\left(\frac{\partial\psi}{\partial x}\right) - \frac{\partial\psi}{\partial z}\frac{\partial}{\partial y}\left(\frac{\partial\psi}{\partial x}\right)\right) + \varphi \frac{\partial\psi}{\partial x}\left(\frac{\partial\psi}{\partial y}\frac{\partial\varphi}{\partial z} - \frac{\partial\psi}{\partial z}\frac{\partial\varphi}{\partial y}\right), \\ \{\{z,x\},y\} = \varphi^2 \left(\frac{\partial\psi}{\partial z}\frac{\partial}{\partial x}\left(\frac{\partial\psi}{\partial y}\right) - \frac{\partial\psi}{\partial x}\frac{\partial}{\partial z}\left(\frac{\partial\psi}{\partial y}\right)\right) + \varphi \frac{\partial\psi}{\partial y}\left(\frac{\partial\psi}{\partial z}\frac{\partial\varphi}{\partial x} - \frac{\partial\psi}{\partial x}\frac{\partial\varphi}{\partial z}\right),$$

which sums zero after canceling out by pairs and use the equality of the mixed partial derivatives for the first column terms.

This bracket is called a Nambu-Poisson bracket. For  $f,g\in \mathbb{F}[x,y,z]$  one has:

$$\{f,g\} = \varphi \begin{vmatrix} \frac{\partial f}{\partial x} & \frac{\partial g}{\partial x} & \frac{\partial \psi}{\partial x} \\ \frac{\partial f}{\partial y} & \frac{\partial g}{\partial y} & \frac{\partial \psi}{\partial y} \\ \frac{\partial f}{\partial z} & \frac{\partial g}{\partial z} & \frac{\partial \psi}{\partial z} \end{vmatrix},$$

so  $\psi$  is a non-constant Casimir of  $\{\cdot, \cdot\}$ . Consequently this Nambu-Poisson algebra is not simple.

5) (Generalization) Let  $\varphi, \psi_3, \dots, \psi_n \in \mathcal{A} := \mathbb{F}[x_1, \dots, x_n]$ . For  $f, g \in \mathbb{F}[x_1, \dots, x_n]$ ,

$$\{f,g\} = \varphi \begin{vmatrix} \frac{\partial f}{\partial x_1} & \frac{\partial g}{\partial x_1} & \frac{\partial \psi_3}{\partial x_1} & \cdots & \frac{\partial \psi_n}{\partial x_1} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ \frac{\partial f}{\partial x_n} & \frac{\partial g}{\partial x_n} & \frac{\partial \psi_3}{\partial x_n} & \cdots & \frac{\partial \psi_n}{\partial x_n} \end{vmatrix},$$

defines a Poisson bracket, where  $\psi_3, \ldots, \psi_n$  are Casimirs. Hence this Poisson algebra is never simple.

6) Let  $A = (a_{ij})$  be a skew-symmetric matrix with entries in  $\mathbb{F}$ . For  $f, g \in \mathcal{A} := \mathbb{F}[x_1, \ldots, x_n]$  we can define

$$\{f,g\} := \sum_{1 \le i,j \le n} a_{ij} \, x_i \, x_j \, \frac{\partial f}{\partial x_i} \, \frac{\partial g}{\partial x_j},$$

*i.e.*,  $\{x_i, x_j\} = a_{ij} x_i x_j$ . This is known as a diagonal (quadratic) Poisson bracket. To check the Jacobi identity notice that

$$\{\{x_i, x_j\}, x_k\} = (a_{ij} a_{jk} - a_{ji} a_{ik}) x_i x_j x_k,$$

from where  $\{\{x_i, x_j\}, x_k\} + \operatorname{cyclic}(i, j, k) = 0$  easily follows.

7) On  $\mathbb{C}[x, y, z]$  take

$$\{x,y\} = z, \quad \{y,z\} = x, \quad \{z,x\} = y,$$

that is, the Nambu-Poisson bracket with  $\varphi = 1$  and  $\psi = \frac{1}{2}(x^2 + y^2 + z^2)$ . As before,  $\psi$  is a Casimir. The ideal  $\langle \psi \rangle$  is a Poisson ideal, then the nilpotent cone

$$\frac{(\mathbb{C}[x, y, z], \{\cdot, \cdot\})}{\langle x^2 + y^2 + z^2 \rangle}$$

is equipped with a Poisson structure.



FIGURE 2. Nilpotent cone.

# Poisson manifolds

**Definition 2.20.** A Poisson manifold is a manifold  $\mathcal{M}$  for which  $\mathcal{C}^{\infty}(\mathcal{M})$  is easymptotic equipped with a Poisson bracket.

## Example 2.21.

• Let  $(\mathcal{M}, \omega)$  be a symplectic manifold, *i.e.*,  $\omega$  is a closed 2-form which is non-degenerate. To each  $f \in \mathcal{C}^{\infty}(\mathcal{M})$  a vector field  $X_f$  is assigned:

$$\omega(X_f, \cdot) = df.$$

A Poisson bracket on  $\mathcal{C}^{\infty}(\mathcal{M})$  is defined by

$$\{f,g\} := \omega(X_f, X_g), \text{ for } f, g \in \mathcal{C}^{\infty}(\mathcal{M}).$$

It turns out that a bracket defined as above satisfies the Jacobi identity if and only if  $\omega$  is a closed 2-form (*i.e.*,  $d\omega = 0$ ).

Take for example  $\mathcal{M} = \mathbb{R}^{2n}$  with coordinates  $x_1, \ldots, x_n, y_1, \ldots, y_n$ , and the 2-form

$$\omega = \sum_{i=1}^{n} dx_i \wedge dy_i$$

 $(\mathbb{R}^{2n}, \omega)$  is a symplectic manifold and the Poisson bracket looks like

$$\{f,g\} = \sum_{i=1}^{n} \left( \frac{\partial f}{\partial x_i} \frac{\partial g}{\partial y_i} - \frac{\partial f}{\partial y_i} \frac{\partial g}{\partial x_i} \right), \quad \text{for } f,g \in \mathcal{C}^{\infty}(\mathbb{R}^{2n}).$$

**Definition 2.22.** A Lie-Poisson group is a Lie group G equipped with a Poisson structure such that

$$\begin{array}{rccc} G \times G & \to & G \\ (g,h) & \mapsto & gh \end{array}$$

is a Poisson map.

### Application: deformation of commutative algebras

Let us fix some notation:

- $\mathcal{A}$ : commutative algebra with unit over  $\mathbb{F}$  (a field of characteristic zero).
- $\nu$ : formal parameter.
- $\mathcal{A}^{\nu} = \mathcal{A}[[\nu]]$ , and  $\mathbb{F}^{\nu} = \mathbb{F}[[\nu]]$ : formal power series.

**Definition 2.23.** A formal deformation of  $\mathcal{A}$  is an  $\mathbb{F}^{\nu}$  (associative) algebra structure  $\star$  on  $\mathcal{A}^{\nu}$  such that for  $f, g \in \mathcal{A} \subseteq \mathcal{A}^{\nu}$ ,

$$f \star g = f \cdot g + \sum_{i>0} \pi_i(f,g) \,\nu^i.$$

So i = 0 gives back to the original product.

Let us suppose that  $\star$  exists, and in order to simplify the discussion, let us suppose further that  $\pi_1$  is skew-symmetric.

For  $f, g \in \mathcal{A} \subseteq \mathcal{A}^{\nu}$ ,  $f \star g = f \cdot g + \pi_1(f, g) \nu + \mathcal{O}(\nu^2)$ .  $[f, g]_{\star} := f \star g - g \star f$   $= \pi_1(f, g) \nu - \pi_1(g, f) \nu + \mathcal{O}(\nu^2)$ 

$$= 2 \pi_1(f,g) \nu + \mathcal{O}(\nu^2).$$

Since  $\star$  is associative then  $[\cdot, \cdot]_{\star}$  is a Lie bracket, so the Jacobi identity holds.

$$0 = [[f,g]_{\star},h]_{\star} + \operatorname{cyclic}(f,g,h)$$
  
=  $[2\pi_1(f,g)\nu + \mathcal{O}(\nu^2),h]_{\star} + \operatorname{cyclic}(f,g,h)$   
=  $4\pi_1(\pi_1(f,g),h)\nu^2 + \mathcal{O}(\nu^3) + \operatorname{cyclic}(f,g,h).$ 

In particular,

$$\pi_1(\pi_1(f,g),h) + \operatorname{cyclic}(f,g,h) = 0,$$

thus  $\pi_1$  is a Lie bracket.

What does the associativity of  $\star$  imply for  $\pi_1$ ?

$$(f \star g) \star h = f \star (g \star h),$$
  

$$\Rightarrow (fg + \pi_1(f,g)\nu + \mathcal{O}(\nu^2)) \star h = f \star (gh + \pi_1(g,h)\nu + \mathcal{O}(\nu^2))$$
  

$$\Rightarrow fgh + (\pi_1(f,g)h + \pi_1(fg,h))\nu + \mathcal{O}(\nu^2) = fgh + (\pi_1(g,h) \cdot f + \pi_1(f,gh))\nu + \mathcal{O}(\nu^2)$$
  

$$\Rightarrow \pi_1(f,g)h - \pi_1(f,gh) + \pi_1(fg,h) - \pi_1(g,h)f = 0.$$
(2.1)

After making the cyclic permutation  $f \to g \to h$  in (2.1),

$$\pi_1(g,h)f - \pi_1(g,hf) + \pi_1(gh,f) - \pi_1(h,f)g = 0.$$
(2.2)

Substracting (2.2) from (2.1) and reordering terms one obtains:

$$\pi_1(f, gh) = \pi_1(f, g)h + \pi_1(f, h)g,$$

which means that  $\pi_1$  is a biderivation, hence it is a Poisson bracket.

In general, the skew-symmetric part of  $\pi_1$ ,  $\pi_1^-$ , is a Poisson bracket.

In view of the above, several questions arise:

- $\diamond$  Does associativity imply other conditions on  $\pi_i$ , for i > 0?
- $\diamond$  Given a Poisson algebra  $(\mathcal{A}, \cdot, \{\cdot, \cdot\})$ , does there exist a deformation of  $\mathcal{A}$  such that  $f \star g = f \cdot g + \frac{1}{2} \{f, g\} \nu + \mathcal{O}(\nu^2)$ ?
  - Answer by Kontsevich in 1992: yes if  $\mathcal{A}$  is smooth (*i.e.*,  $\Omega^1(\mathcal{A})$  is projective over  $\mathcal{A}$ ).

Similar questions:

- $\diamond$  Can one deform  $\{\cdot, \cdot\}$ ?
- ♦  $\mathcal{A}^{\nu}$  viewed as a commutative algebra over  $\mathbb{F}^{\nu}$ ; is  $\{\cdot, \cdot\}_{\star} = \sum_{k\geq 0} \frac{1}{k!} \{\cdot, \cdot\} \nu^{k}$  an  $\mathbb{F}^{\nu}$ -Poisson bracket?

### Poisson cohomology

Let  $(\mathcal{A}, \cdot, \{\cdot, \cdot\})$  be a Poisson algebra. A *p*-derivation on  $\mathcal{A}$  is a *p*-linear map  $P : \mathcal{A}^p \to \mathcal{A}$  which is a derivation in each argument. Let us define

 $\mathfrak{X}^p(\mathcal{A}) := \{ P : \mathcal{A}^p \to \mathcal{A} \mid P \text{ is a skew-symmetric } p \text{-derivation} \}.$ 

On  $\mathfrak{X}^{\bullet}(\mathcal{A}) := \bigoplus_{p=0}^{\infty} \mathfrak{X}^p(\mathcal{A})$  there are two operations:

 $\triangleright$  Wedge product: for  $P \in \mathfrak{X}^p(\mathcal{A})$  and  $Q \in \mathfrak{X}^q(\mathcal{A}), P \wedge Q$  is defined by

$$P \wedge Q(f_1, \dots, f_{p+q}) := \sum_{\sigma \in S_{p,q}} \operatorname{sign}(\sigma) P(f_{\sigma(1)}, \dots, f_{\sigma(p)}) Q(f_{\sigma(p+1)}, \dots, f_{\sigma(p+q)}),$$

where  $S_{p,q}$  denotes the set of shuffle permutations of  $\{1, 2, \ldots, p+q\}$ , that is, permutations which satisfy

$$\sigma(1) < \sigma(2) < \dots < \sigma(p)$$
, and  $\sigma(p+1) < \sigma(p+2) < \dots < \sigma(p+q)$ 

It can be checked that  $P \wedge Q \in \mathfrak{X}^{p+q}(\mathcal{A})$ .

 $\triangleright$  Schouten bracket: for  $P \in \mathfrak{X}^p(\mathcal{A})$  and  $Q \in \mathfrak{X}^q(\mathcal{A}), [P,Q]_S$  is defined by

$$[P,Q]_{S}(f_{1},\ldots,f_{p+q-1}) := \sum_{\sigma \in S_{q,p-1}} \operatorname{sign}(\sigma) P(Q(f_{\sigma(1)},\ldots,f_{\sigma(q)}),f_{\sigma(q+1)},\ldots,f_{\sigma(p+q-1)}) + \sum_{\sigma \in S_{p,q-1}} \operatorname{sign}(\sigma) Q(P(f_{\sigma(1)},\ldots,f_{\sigma(p)}),f_{\sigma(p+1)},\ldots,f_{\sigma(p+q-1)}).$$

It can also be checked that  $[P,Q]_S \in \mathfrak{X}^{p+q-1}(\mathcal{A}).$ 

With the above operations it turns out that  $(\mathfrak{X}^{\bullet}(\mathcal{A}), [\cdot, \cdot]_S)$  is a graded Lie algebra.

Remark 2.24. For  $P \in \mathfrak{X}^2(\mathcal{A})$ ,  $[P, P]_S = 0$  if and only if P satisfies the Jacobi identity.

The graded Jacobi identity:

$$(-1)^{(p-1)(r-1)}[[P,Q]_S,R]_S + \operatorname{cyclic}(P,Q,R) = 0,$$

for every  $P \in \mathfrak{X}^p(\mathcal{A}), Q \in \mathfrak{X}^q(\mathcal{A})$  and  $R \in \mathfrak{X}^r(\mathcal{A})$ .

If  $\Pi \in \mathfrak{X}^2(\mathcal{A})$  is a Poisson structure on  $\mathcal{A}$ , *i.e.*,  $[\Pi,\Pi]_S = 0$ , then from the graded Jacobi identity we get

$$[\Pi, [\Pi, P]_S]_S = 0,$$

for every  $P \in \mathfrak{X}^p(\mathcal{A})$ . Thus if we define  $\delta_{\Pi} : \mathfrak{X}^{\bullet}(\mathcal{A}) \to \mathfrak{X}^{\bullet+1}(\mathcal{A})$  by  $\delta_{\Pi}(P) := [\Pi, P]_S$ , the last equation can be written as  $\delta_{\Pi} \circ \delta_{\Pi} = 0$ . Consequently we obtain a cochain complex whose homology is called the Poisson cohomology of  $\mathcal{A}$ .