
POISSON STRUCTURES

1. Historical background

Let us recall the Newton’s second law :

Mass×Acceleration = Force.

The force is described by a potential field particle V : R3 → R. Concretely, Force = −∇V .

Let us denote bym the mass of the particle and by q = (q1, q2, q3) ∈ R3 its coordinates position
in the space. Then the equation of motion can be written as

m q̈ = −∇V.

This is a second order differential equation in R3 (here, R3 is the configuration space).
In each coordinate:

m q̈i = −∂V
∂qi

, i = 1, 2, 3.

q̇ : velocity of the particle,

p := m q̇ : momentum of the particle.

What Newton really stated:

Force = change in momentum.

Energy of the particle:

H = Kinetic energy + Potential energy

=
1

2
m

3∑
i=1

q2
i + V (q)

=
1

2m

3∑
i=1

p2
i + V (q).

Another way to write the equations of motion:
q̇i =

∂H

∂pi
,

ṗi = −∂H
∂qi

,

which is a system of first order differential equations on R6 (here, R6 is the phase space). This
is the same as giving a vector field in R6, hence we have two points of view for the solutions
of this system:

(i) as the time evolution of the system, and
(ii) as integral curves of a vector field.



Let us notice that H is a constant of motion (i.e., Ḣ = 0). In effect,

Ḣ =
3∑
i=1

(
∂H

∂qi
q̇i +

∂H

∂pi
pi

)

=
3∑
i=1

(
∂H

∂qi

∂H

∂pi
− ∂H

∂pi

∂H

∂qi

)
= 0.

For any function f : R6 → R, what is ḟ?

ḟ =

3∑
i=1

(
∂f

∂qi

∂H

∂pi
− ∂f

∂pi

∂H

∂qi

)
.︸ ︷︷ ︸

Poisson bracket between f andH

For any pair of functions f, g : R6 → R,

{f, g} :=
3∑
i=1

(
∂f

∂qi

∂g

∂pi
− ∂f

∂pi

∂g

∂qi

)
.

In these terms the equations of motion can be written as follows:{
q̇i = {qi, H},
ṗi = {pi, H}.

The property of H being a constant of motion for the mechanical system is an algebraic
manifestation of the skew-symmetry of the Poisson bracket:

{H,H} = Ḣ = 0.

In fact,

f is a constant of motion⇔ ḟ = 0

⇔ {f,H} = 0.

Constants of motion are important!

Theorem 1.1 (Poisson’s theorem). If f and g are constants of motion then {f, g} is also a
constant of motion.

In formulas:
{f,H} = 0

{g,H} = 0

}
⇒ {{f, g}, H} = 0.

Jacobi, 30 years later:

{{f, g}, H}+ {{H, f}, g}+ {{g,H}, f} = 0. Jacobi identity

What a Poisson bracket would be?

{·, ·} is skew-symmetric,
{·, ·} satisfies the Jacobi identity,
{·, ·} should be a derivation (like a vector field).



2. A brief introduction to Poisson brackets

We are thinking of a Poisson brackt as a map {·, ·} : A×A → A, where A is some nice space.
The most reasonable thing to expect is that A be an associative commutative algebra.

Let us fix a ground field F of characteristic zero (think for example on R or C).

Definition 2.1. An algebra over F is an F-vector space A with a bilinear map µ : A×A → A
(i.e., a product). It is said to be

commutative if for every a, b ∈ A, µ(b, a) = µ(a, b);
associative if for every a, b, c ∈ A, µ(µ(a, b), c) = µ(a, µ(b, c));
unitary if there exists e ∈ A such that for every a ∈ A, µ(a, e) = µ(e, a) = a.

Example 2.2.

1) F[x1, . . . , xn], polynomials in n variables (n could be ∞). Here, µ is the usual product
of polynomials. It is commutative, associative and has a unit.

2) The n × n matrices with matrix multiplication. It is associative, has a unit but it is
not commutative.

3) Functions on Rn or Cn (continuous, C∞, polynomial, holomorphic, etc.).
4) Functions on a sphere, S2 = {(x, y, z) ∈ R3 | x2 + y2 + z2 = 1}, or on any variety.

Figure 1. 2-sphere.

Some additional definitions:

� Let A be an associative commutative algebra over F. A subset I ⊆ A is said to be an
ideal of A if for every a ∈ A and x ∈ I, x a ≡ x · a ≡ µ(x, a) ∈ I (otherwise written,
I ·A ⊆ I). I is proper if I is different from {0} and A.
� Let A,B be two commutative associative algebras. A linear map ϕ : A → B is said to
be a morphism of algebras if ϕ(a · a′) = ϕ(a) · ϕ(a′).

Proposition 2.3.

� If I is a proper ideal of A then A/I has a unique algebra structure such that the
canonical projection π : A → A/I is a morphism of algebras.



� If ϕ : A → B is a morphism of algebras then Ker(ϕ) := {a ∈ A | ϕ(a) = 0} is an ideal
of A and ϕ factors as

A B

A/Ker(ϕ) Im(ϕ)

ϕ

π

∼

where Im(ϕ) := {b ∈ B | ∃a ∈ A, ϕ(a) = b}.

Example 2.4.

5) Let f1, . . . , fk ∈ A = F[x1, . . . , xn]. The ideal I generated by f1, . . . , fk (the smallest
one containing each fj) has the form f1A + · · · + fkA. This ideal is denoted by
〈f1, . . . , fk〉. The quotient algebra

A
I

=
F[x1, . . . , xn]

〈f1, . . . , fk〉
can be viewed as functions on V (f1, . . . , fk) = {x ∈ Fn | ∀i = 1, . . . , k, fi(x) = 0}.

If f ∈ A, f̄ = f + I ∈ A/I.
If x ∈ V (f1, . . . , fk) then f̄(x) = f(x), because λ(x) = 0 for every λ ∈ I.

Definition 2.5. An algebra (A, µ) is said to be a Lie algebra if

µ is skew-symmetric: for all a, b ∈ A, µ(b, a) = −µ(a, b),
µ satisfies the Jacobi identity: for all a, b, c ∈ A, µ(µ(a, b), c) + cyclic(a, b, c) = 0.

Here, cyclic(a, b, c) indicates that the sum is performed over all cyclic per-
mutations, that is,

µ(µ(a, b), c) + µ(µ(c, a), b) + µ(µ(b, c), a).

It is usual to denote µ by [·, ·] or {·, ·}.

A subspace B ⊆ A is said to be a

Lie subalgebra if [B,B] ⊆ B,
Lie ideal if [B,A] ⊆ B. In addition, B is proper if it is different from {0} and A.

Proposition 2.3 holds in the context of Lie algebras.

Example 2.6.

1) The space of n× n matrices with a new product, the commutator:

[A,B] = AB −BA.

Jacobi identity:

[[A,B], C] = ABC−BAC−CAB+CBA,

[[B,C], A] = BCA−CBA−ABC+ACB,

[[C,A], B] = CAB−ACB−BCA+BAC.



Hence, [[A,B], C] + cyclic(A,B,C) = 0.
2) More generally, for any associative algebra the commutator is a Lie bracket.
3) F3 with the vector product:a1

a2

a3

×
b1b2
b3

 =

a2b3 − a3b2

a3b1 − a1b3

a1b2 − a2b1


4) The n× n matrices of zero trace form a Lie subalgebra of the Lie algebra in the first

example, because

tr([A,B]) = tr(AB −BA) = tr(AB −AB) = 0.

5) Upper triangular n× n matrices form a Lie subalgebra, hence a Lie subalgebra.
6) In the same way, skew-symmetric matrices (AT = −A). In effect,

[A,B]T = (AB −BA)T = (AB)T − (BA)T

= BTAT −ATBT = (−B)(−A)− (−A)(−B)

= BA−AB = −(AB −BA)

= −[A,B].

Derivations and biderivations

Definition 2.7. Let A be an associative commutative algebra. A derivation of A (with values
in A) is a linear map δ : A → A such that

δ(ab) = δ(a)b+ aδ(b).

Example 2.8.

1) Let ϕ ∈ F[x] be any polynomial. The map

D : F[x] −→ F[x]

f 7→ ϕf ′,

is a derivation of F[x].
2) In the same way, let ϕ ∈ F[x1; . . . , xn] be any polynomial. Then for all i = 1, . . . , n,

the map
∂

∂xi
: F[x1, . . . , xn] −→ F[x1, . . . , xn]

f 7→ ϕ
∂f

∂xi
,

is a derivation of F[x1, . . . , xn].
3) All the derivations of F[x1, . . . , xn] are of the form

n∑
i=1

gi
∂

∂xi
: F[x1, . . . , xn] −→ F[x1, . . . , xn]

f 7→
n∑
i=1

gi
∂f

∂xi
,



for some g1, . . . , gn ∈ F[x1, . . . , xn].
Reason:
Every derivation D of F[x1, . . . , xn] is determined by its values on x1, . . . , xn.
In fact, for f ∈ F[x1, . . . , xn],

D(f) =
n∑
i=1

D(xi)
∂f

∂xi
.

Conversely, for any g1, . . . , gn ∈ F[x1, . . . , xn] the linear map defined by

D(f) :=
n∑
i=1

gi
∂f

∂xi

is a derivation of F[x1, . . . , xn].
Geometrically:

•
Fn

f

D(f)

Remark 2.9.

� On a smooth manifold M there is a one to one correspondence between vector fields
and derivations of C∞(M). This is not true for the complex case.
� For a general associative commutative algebra A every derivation is determined by its
values on a set of generators. However the converse is not true.

For example, on the sphere S2 = {(x, y, z) ∈ R3 | x2 + y2 + z2 = 1}, every
derivation D must satisfy

xD(x) + yD(y) + zD(z) = 0.

Proposition 2.10. The derivations of an associative commutative algebra A forms a Lie
algebra under the commutator.

Proof.
We need to show that if δ and ρ are derivations of A then [δ, ρ] = δ ◦ ρ − ρ ◦ δ is also a



derivation. In effect, for a, b ∈ A,

[δ, ρ](ab) = δ ◦ ρ(ab)− ρ ◦ δ(ab)

= δ(ρ(a)b+ aρ(b))− ρ(δ(a)b+ aδ(b))

= δ ◦ ρ(a)b+ ρ(a)δ(b) + δ(a)ρ(b) + aδ ◦ ρ(b)

− ρ ◦ δ(a)b−δ(a)ρ(b)−ρ(a)δ(b)−aρ ◦ δ(b)

= (δ ◦ ρ(a)− ρ ◦ δ(a)) b+ a (δ ◦ ρ(b)− ρ ◦ δ(b))

= [δ, ρ](a) b+ a [δ, ρ](b).

�X

Definition 2.11. A biderivation P of an associative commutative algebra A is a bilinear map
P : A×A → A satisfying: for any a ∈ A the linear maps

P 1
a : A −→ A , P 2

a : A −→ A
b 7→ P (a, b) b 7→ P (b, a)

are derivations of A.

Example 2.12. On F[x, y] the bilinear map

P : F[x, y] −→ F[x, y]

(f, g) 7→ ϕ ∂f
∂x

∂g
∂y

is a biderivation, for any polynomial ϕ ∈ F[x, y].

Proposition 2.13. Every skew-symmetric biderivation P of F[x1, . . . , xn] is determined by
its values P (xi, xj) with 1 ≤ i < j ≤ n. In fact,

P (f, g) =
∑

1≤i<j≤n
P (xi, xj)

(
∂f

∂xi

∂g

∂xj
− ∂f

∂xj

∂g

∂xi

)
.

In short,

P =
∑

1≤i<j≤n
P (xi, xj)

∂

∂xi
∧ ∂

∂xj
.

Remark 2.14. Geometrically, in the case of smooth manifolds skew-symmetric biderivations
correspond to bivector fields.

In the same way one defines multiderivations.

Definition 2.15. A Poisson algebra (A, ·, {·, ·}) is the data of

A, an F-vector space,
(A, ·), an associative commutative algebra with unit,
(A, {·, ·}), a Lie algebra,
{·, ·}, a biderivation.



Important feature:

For any a ∈ A, Xa := {·, a} : A → A, b 7→ {b, a} is a derivation of A, called the Hamiltonian
derivation associated to a.
If a ∈ A is such that Xa = 0 one says that a is a Casimir (of A).

A subspace B of A is called a Poisson ideal if

B · A ⊆ B and {B,A} ⊆ B
↓ ↓

B is an ideal of (A, ·) B is an ideal of (A, {·, ·}).

A is said to be (Poisson) simple if its only Poisson ideals are A and {0}.

A morphism of Poisson algebras ϕ : A → B is a linear map which is an algebra morhpism and
a Li algebra morhpism.

In these lectures we are dealing with polynomial Poisson algebras,

(A = F[x1, . . . , xn],+, {·, ·}).

A polynomial Poisson bracket {·, ·} is completely determined by ({xi, xj})1≤i,j≤n:

For f, g ∈ A, {f, g} =
∑

1≤i,j≤n
{xi, xj}

∂f

∂xi

∂g

∂xj
.

So if we define a matrix P = (Pi,j) by Pi,j := {xi, xj} then

{f, g} = (∇f)TP (∇g),

where ∇f =
(
∂f
∂x1

, . . . , ∂f∂xn

)T
. In particular, g is a Casimir if and only if P (∇g) = 0.

Warning: Not every choice of {xi, xj} leads to a Poisson bracket as the Jacobi identity may
not be satisfied.

Proposition 2.16. The skew-symmetric biderivation {·, ·} defined by

{f, g} =

n∑
i,j=1

Pi,j
∂f

∂xi

∂g

∂xj

satisfies the Jacobi identity (hence is a Poisson bracket) if and only if

{{xi, xj}, xk}+ cyclic(i, j, k) = 0,

if and only if the Jacobi identity is satisifed for all triplets xi, xj , xk with i < j < k.

Proposition 2.17. As in the case of algebras and Lie algebras, the Kernel of a Poisson
morphism is a Poisson ideal and every Poisson morphism factors into a surjective and an
injective morphisms.



Proposition 2.18. Let A be a Poisson algebra.

1) The Casimirs of A form a Poisson subalgebra.
2) The ideal generated by any collection of Casimirs is a Poisson ideal.

Proof.

1) Let c1 and c2 be Casimirs of A then {c1, c2} = 0; but also, for any a ∈ A,

{a, c1 c2} = c1 {a, c2}︸ ︷︷ ︸
0

+ {a, c1}︸ ︷︷ ︸
0

c2 = 0,

thus c1 c2 is a Casimir of A.
2) Let I = 〈cj〉j∈J ⊆ A, where all cj are Casimirs. For x ∈ I we have x =

∑
xj cj , for

some xj ∈ A and where all but finitely of them are zero. We need to show that for
any a ∈ A, {x, a} ∈ I.

{x, a} =
{∑

xj cj , a
}

=
∑
{xj cj , a}

=
∑

(xj {cj , a}+ {xj , a} cj)

=
∑
{xj , a} cj ∈ I,

where we have used that {cj , a} = 0 since cj is a Casimir of A, for all j ∈ J .

�X

Example 2.19.

1) Let V be an F-vector space with a skew-symmetric bilinear form σ : V × V → F. Let
A = Sym(V) ' F[x1, . . . , xn], if we suppose that V is generated by x1, . . . , xn.
σ extends to a unique (skew-symmetric) biderivation of A: {xi, xj} := σ(xi, xj).
In order to check the Jacobi identity it is enough to do it for triplets xi, xj , xk. In
effect,

{{xi, xj}, xk}+ cyclic(i, j, k) = 0,

since {xi, xj} ∈ F and then {{xi, xj}, xk} = 0.

1) Let g be a Lie algebra. On Sym(g) a Poisson structure is defined as follows:
For x, y ∈ g define {x, y} := [x, y] and extend {·, ·} to a biderivation.

For monomials x = x1 · · ·xm and y = y1 · · · yn this gives

{x, y} =
∑
i,j

[xi, yj ]︸ ︷︷ ︸
∈g

x1 · · · x̂i · · ·xm y1 · · · ŷj · · · yn.

The Jacobi identity for g then implies the corresponding one for Sym(g).

Taking I = 〈g〉 ⊆ Sym(g) we get a non-trivial proper ideal of Sym(g).



3) (Combination of the previous two examples) If g is a Lie algebra and σ : g× g→ F is
bilinear, skew-symmetric and satisfies

σ([xi, xj ], xk) + cyclic(i, j, k) = 0, for every xi, xj , xk ∈ g,

then Sym(g) is a Poisson algebra with

{xi, xj} := [xi, xj ] + σ(xi, xj).

4) Let ϕ,ψ ∈ A := F[x, y, z], with ϕ 6= 0 and ψ /∈ F. On A a Poisson bracket is defined
by

{x, y} = ϕ
∂ψ

∂z
, {y, z} = ϕ

∂ψ

∂x
, {z, x} = ϕ

∂ψ

∂y
.

The only thing to check is that {{x, y}, z}+ cyclic(x, y, z) = 0. A direct computation
shows:

{{x, y}, z} = ϕ2

(
∂ψ

∂x

∂

∂y

(
∂ψ

∂z

)
− ∂ψ

∂y

∂

∂x

(
∂ψ

∂z

))
+ ϕ

∂ψ

∂z

(
∂ψ

∂x

∂ϕ

∂y
− ∂ψ

∂y

∂ϕ

∂x

)
,

{{y, z}, x} = ϕ2

(
∂ψ

∂y

∂

∂z

(
∂ψ

∂x

)
− ∂ψ

∂z

∂

∂y

(
∂ψ

∂x

))
+ ϕ

∂ψ

∂x

(
∂ψ

∂y

∂ϕ

∂z
− ∂ψ

∂z

∂ϕ

∂y

)
,

{{z, x}, y} = ϕ2

(
∂ψ

∂z

∂

∂x

(
∂ψ

∂y

)
− ∂ψ

∂x

∂

∂z

(
∂ψ

∂y

))
+ ϕ

∂ψ

∂y

(
∂ψ

∂z

∂ϕ

∂x
− ∂ψ

∂x

∂ϕ

∂z

)
,

which sums zero after canceling out by pairs and use the equality of the mixed partial
derivatives for the first column terms.
This bracket is called a Nambu-Poisson bracket. For f, g ∈ F[x, y, z] one has:

{f, g} = ϕ

∣∣∣∣∣∣∣∣∣∣∣∣∣

∂f

∂x

∂g

∂x

∂ψ

∂x
∂f

∂y

∂g

∂y

∂ψ

∂y

∂f

∂z

∂g

∂z

∂ψ

∂z

∣∣∣∣∣∣∣∣∣∣∣∣∣
,

so ψ is a non-constant Casimir of {·, ·}. Consequently this Nambu-Poisson algebra is
not simple.

5) (Generalization) Let ϕ,ψ3, . . . , ψn ∈ A := F[x1, . . . , xn]. For f, g ∈ F[x1, . . . , xn],

{f, g} = ϕ

∣∣∣∣∣∣∣∣∣∣∣∣∣

∂f

∂x1

∂g

∂x1

∂ψ3

∂x1
· · · ∂ψn

∂x1

...
...

...
. . .

...

∂f

∂xn

∂g

∂xn

∂ψ3

∂xn
· · · ∂ψn

∂xn

∣∣∣∣∣∣∣∣∣∣∣∣∣
,

defines a Poisson bracket, where ψ3, . . . , ψn are Casimirs. Hence this Poisson algebra
is never simple.



6) Let A = (aij) be a skew-symmetric matrix with entries in F. For f, g ∈ A :=

F[x1, . . . , xn] we can define

{f, g} :=
∑

1≤i,j≤n
aij xi xj

∂f

∂xi

∂g

∂xj
,

i.e., {xi, xj} = aij xi xj . This is known as a diagonal (quadratic) Poisson bracket. To
check the Jacobi identity notice that

{{xi, xj}, xk} = (aij ajk − aji aik)xi xj xk,

from where {{xi, xj}, xk}+ cyclic(i, j, k) = 0 easily follows.

7) On C[x, y, z] take

{x, y} = z, {y, z} = x, {z, x} = y,

that is, the Nambu-Poisson bracket with ϕ = 1 and ψ = 1
2 (x2 + y2 + z2). As before,

ψ is a Casimir. The ideal 〈ψ〉 is a Poisson ideal, then the nilpotent cone

(C[x, y, z], {·, ·})
〈x2 + y2 + z2〉

is equipped with a Poisson structure.

Figure 2. Nilpotent cone.

Poisson manifolds

Definition 2.20. A Poisson manifold is a manifoldM for which C∞(M) is eaquipped with
a Poisson bracket.

Example 2.21.

• Let (M, ω) be a symplectic manifold, i.e., ω is a closed 2-form which is non-degenerate.
To each f ∈ C∞(M) a vector field Xf is assigned:

ω(Xf , ·) = df.

A Poisson bracket on C∞(M) is defined by

{f, g} := ω(Xf , Xg), for f, g ∈ C∞(M).



It turns out that a bracket defined as above satisfies the Jacobi identity if and only if
ω is a closed 2-form (i.e., dω = 0).

Take for exampleM = R2n with coordinates x1, . . . , xn, y1, . . . , yn, and the 2-form

ω =

n∑
i=1

d xi ∧ d yi.

(R2n, ω) is a symplectic manifold and the Poisson bracket looks like

{f, g} =

n∑
i=1

(
∂f

∂xi

∂g

∂yi
− ∂f

∂yi

∂g

∂xi

)
, for f, g ∈ C∞(R2n).

Definition 2.22. A Lie-Poisson group is a Lie group G equipped with a Poisson structure
such that

G×G → G

(g, h) 7→ gh

is a Poisson map.

Application: deformation of commutative algebras

Let us fix some notation:

• A: commutative algebra with unit over F (a field of characteristic zero).
• ν: formal parameter.
• Aν = A[[ν]], and Fν = F[[ν]]: formal power series.

Definition 2.23. A formal deformation of A is an Fν (associative) algebra structure ? on Aν

such that for f, g ∈ A ⊆ Aν ,

f ? g = f · g +
∑
i>0

πi(f, g) νi.

So i = 0 gives back to the original product.

Let us suppose that ? exists, and in order to simplify the discussion, let us suppose further
that π1 is skew-symmetric.
For f, g ∈ A ⊆ Aν , f ? g = f · g + π1(f, g) ν +O(ν2).

[f, g]? := f ? g − g ? f

= π1(f, g) ν − π1(g, f) ν +O(ν2)

= 2π1(f, g) ν +O(ν2).

Since ? is associative then [·, ·]? is a Lie bracket, so the Jacobi identity holds.

0 = [[f, g]?, h]? + cyclic(f, g, h)

= [2π1(f, g) ν +O(ν2), h]? + cyclic(f, g, h)

= 4π1(π1(f, g), h) ν2 +O(ν3) + cyclic(f, g, h).



In particular,

π1(π1(f, g), h) + cyclic(f, g, h) = 0,

thus π1 is a Lie bracket.

What does the associativity of ? imply for π1?

(f ? g) ? h = f ? (g ? h),

⇒
(
fg + π1(f, g) ν +O(ν2)

)
? h = f ?

(
gh+ π1(g, h) ν +O(ν2)

)
⇒ fgh+ (π1(f, g)h+ π1(fg, h)) ν +O(ν2) = fgh+ (π1(g, h) · f + π1(f, gh)) ν +O(ν2)

⇒ π1(f, g)h− π1(f, gh) + π1(fg, h)− π1(g, h)f = 0. (2.1)

After making the cyclic permutation f → g → h in (2.1),

π1(g, h)f − π1(g, hf) + π1(gh, f)− π1(h, f)g = 0. (2.2)

Substracting (2.2) from (2.1) and reordering terms one obtains:

π1(f, gh) = π1(f, g)h+ π1(f, h)g,

which means that π1 is a biderivation, hence it is a Poisson bracket.

In general, the skew-symmetric part of π1, π−1 , is a Poisson bracket.

In view of the above, several questions arise:

� Does associativity imply other conditions on πi, for i > 0?
� Given a Poisson algebra (A, ·, {·, ·}), does there exist a deformation of A such that
f ? g = f · g + 1

2 {f, g} ν +O(ν2)?
Answer by Kontsevich in 1992: yes if A is smooth (i.e., Ω1(A) is projective over A).

Similar questions:

� Can one deform {·, ·}?
� Aν viewed as a commutative algebra over Fν ; is {·, ·}? =

∑
k≥0

1
k! {·, ·} ν

k an Fν-Poisson
bracket?

Poisson cohomology

Let (A, ·, {·, ·}) be a Poisson algebra. A p-derivation on A is a p-linear map P : Ap → A which
is a derivation in each argument. Let us define

Xp(A) := {P : Ap → A| P is a skew-symmetric p-derivation}.

On X•(A) :=

∞⊕
p=0

Xp(A) there are two operations:



. Wedge product: for P ∈ Xp(A) and Q ∈ Xq(A), P ∧Q is defined by

P ∧Q(f1, . . . , fp+q) :=
∑
σ∈Sp,q

sign(σ)P (fσ(1), . . . , fσ(p))Q(fσ(p+1), . . . , fσ(p+q)),

where Sp,q denotes the set of shuffle permutations of {1, 2, . . . , p+ q}, that is, permu-
tations which satisfy

σ(1) < σ(2) < · · · < σ(p), and σ(p+ 1) < σ(p+ 2) < · · · < σ(p+ q).

It can be checked that P ∧Q ∈ Xp+q(A).

. Schouten bracket: for P ∈ Xp(A) and Q ∈ Xq(A), [P,Q]S is defined by

[P,Q]S(f1, . . . , fp+q−1) :=
∑

σ∈Sq,p−1

sign(σ)P (Q(fσ(1), . . . , fσ(q)), fσ(q+1), . . . , fσ(p+q−1))

+
∑

σ∈Sp,q−1

sign(σ)Q(P (fσ(1), . . . , fσ(p)), fσ(p+1), . . . , fσ(p+q−1)).

It can also be checked that [P,Q]S ∈ Xp+q−1(A).

With the above operations it turns out that (X•(A), [·, ·]S) is a graded Lie algebra.

Remark 2.24. For P ∈ X2(A), [P, P ]S = 0 if and only if P satisfies the Jacobi identity.

The graded Jacobi identity:

(−1)(p−1)(r−1)[[P,Q]S , R]S + cyclic(P,Q,R) = 0,

for every P ∈ Xp(A), Q ∈ Xq(A) and R ∈ Xr(A).

If Π ∈ X2(A) is a Poisson structure on A, i.e., [Π,Π]S = 0, then from the graded Jacobi
identity we get

[Π, [Π, P ]S ]S = 0,

for every P ∈ Xp(A). Thus if we define δΠ : X•(A)→ X•+1(A) by δΠ(P ) := [Π, P ]S , the last
equation can be written as δΠ ◦ δΠ = 0. Consequently we obtain a cochain complex whose
homology is called the Poisson cohomology of A.
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