DECAY OF SOLUTIONS OF DISPERSIVE EQUATIONS AND POISSON BRACKETS IN ALGEBRAIC GEOMETRY

UNIVERSIDAD NACIONAL DE COLOMBIA

Facultad de Ciencias - Escuela de Matemáticas

Carlos Augusto León Gil

Supervised by: Pedro Isaza Jaramillo¹ Pol Vanhaecke²

¹Universidad Nacional de Colombia sede Medellín ²Université de Poitiers

> Master Thesis defense Medellín August 19, 2016

Presentation

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Theorem I: Decay of solutions

Theorem II: Optimal decay

DECAY OF SOLUTIONS OF DISPERSIVE EQUATIONS

Theorem I: Decay of solutions

Theorem II: Optimal decay

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Precedents

Presentation

• Problem Statements

2 Theorem I: Decay of solutions• Proof of Theorem I

Theorem II: Optimal decay
 Some previous results

• Proof of Theorem II

Introduction	Theorem I: Decay of solutions	Theorem II: Optimal decay
000000000		
Precedents		

Our starting point will be the initial value problem (IVP) associated to the Korteweg-de Vries (KdV) equation

$$\begin{cases} \partial_t u + \partial_x^3 u + u \partial_x u = 0, \quad u = u(x, t), \quad x, t \in \mathbb{R}, \\ u(0) = u_0. \end{cases}$$
(1)

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Introduction	Theorem I: Decay of solutions	Theorem II: Optimal decay
000000000		
Precedents		

Our starting point will be the initial value problem (IVP) associated to the Korteweg-de Vries (KdV) equation

$$\begin{cases} \partial_t u + \partial_x^3 u + u \partial_x u = 0, \quad u = u(x, t), \quad x, t \in \mathbb{R}, \\ u(0) = u_0. \end{cases}$$
(1)

The KdV equation describes the propagation of one-dimensional longwaves of small amplitude in a shallow medium.

Introduction	Theorem I: Decay of solutions	Theorem II: Optimal decay
000000000		
Precedents		

Our starting point will be the initial value problem (IVP) associated to the Korteweg-de Vries (KdV) equation

$$\begin{cases} \partial_t u + \partial_x^3 u + u \partial_x u = 0, \quad u = u(x, t), \quad x, t \in \mathbb{R}, \\ u(0) = u_0. \end{cases}$$
(1)

The KdV equation describes the propagation of one-dimensional longwaves of small amplitude in a shallow medium.

We intend to study a decay property of exponential type of its solutions u(x,t) in the positive semiaxis x.

Introduction	Theorem I: Decay of solutions	Theorem II: Optimal decay
000000000		
Presedents		

Results on the local and global well-posedness for the IVP (1) in the context of Sobolev spaces $H^s(\mathbb{R})$ have been obtained and successively improved in a series of papers of which we cite among others

ション ふゆ アメリア メリア ション

Introduction	Theorem I: Decay of solutions	Theorem II: Op
000000000		
Precedents		

Intr 00

> Results on the local and global well-posedness for the IVP (1) in the context of Sobolev spaces $H^{s}(\mathbb{R})$ have been obtained and successively improved in a series of papers of which we cite among others

> Saut and Temam [ST], Bona and Smith [BS], Bona and Scott [BSc], Kato [K], Kenig, Ponce and Vega [KPV1], [KPV2], Bourgain [B], Colliander, Keel, Staffilani, Takaoka and Tao [CKSTT], Christ, Colliander and Tao [CCT], Guo [G], and Kishimoto [Ki].

Introduction	Theorem I: Decay of solutions	Theorem II: Optimal decay
000000000		
Deservice		

In **[EKPV]**, Escauriaza, Kenig, Ponce and Vega showed that there exists a constant $a_0 > 0$ such that if $a > a_0$ and if a solution u of the IVP (1) satisfies

$$e^{a x_{+}^{3/2}} u(0) \in L^{2}(\mathbb{R})$$
 and $e^{a x_{+}^{3/2}} u(1) \in L^{2}(\mathbb{R}),$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

then $u \equiv 0$.

troduction	Theorem I: Decay of solutions	Theorem II: Optimal decay
00000000		

In **[EKPV]**, Escauriaza, Kenig, Ponce and Vega showed that there exists a constant $a_0 > 0$ such that if $a > a_0$ and if a solution u of the IVP (1) satisfies

$$e^{a x_{+}^{3/2}} u(0) \in L^2(\mathbb{R})$$
 and $e^{a x_{+}^{3/2}} u(1) \in L^2(\mathbb{R})$,

then $u \equiv 0$.

The exponent of order $x^{3/2}$ is related to the decay of the fundamental solution of the IVP (1).

Theorem I: Decay of solutions

Theorem II: Optimal decay

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Problem Statements

Presentation

- Problem Statements
- 2 Theorem I: Decay of solutions• Proof of Theorem I
- 3 Theorem II: Optimal decay
 Some previous results
 Proof of Theorem II

Introduction 0000000000	Theorem I: Decay of solutions	Theorem II: Optimal decay
Problem Statements		
m) /·		$(1 - a_0 x^{3/2})$

The question arises about if, for an initial datum u_0 with $e^{u_0 x_+} u_0 \in L^2(\mathbb{R})$, the solution of the IVP (1) keeps some decay with exponent of order $x_+^{3/2}$ as time evolves.

Introduction	Theorem I: Decay of solutions	Theorem II: Optimal decay
0000000000		
Problem Statements		

The question arises about if, for an initial datum u_0 with $e^{a_0 x_+^{3/2}} u_0 \in L^2(\mathbb{R})$, the solution of the IVP (1) keeps some decay with exponent of order $x_+^{3/2}$ as time evolves.

An affirmative answer to this question was given in **[ILP**], where it was proved, that if $e^{a_0 x_+^{3/2}} u_0 \in L^2(\mathbb{R})$, then the solution u(t) on [0,T] is such that

$$\left\| e^{a(t) \, x_{+}^{3/2}} u(t) \right\|_{L^{2}(\mathbb{R})} \le C, \tag{2}$$

where $C = C(a_0, T, ||u_0||_{L^2(\mathbb{R})}, ||e^x u_0||_{L^2(\mathbb{R})})$, and

$$a(t) = \frac{a_0}{\sqrt{1 + 27 a_0^2 t}}, \qquad t \in [0, T].$$

Introduction	Theorem I: Decay of solutions	Theorem II: Optimal decay
0000000000		
Problem Statements		

The question arises about if, for an initial datum u_0 with $e^{a_0 x_+^{3/2}} u_0 \in L^2(\mathbb{R})$, the solution of the IVP (1) keeps some decay with exponent of order $x_+^{3/2}$ as time evolves.

An affirmative answer to this question was given in **[ILP**], where it was proved, that if $e^{a_0 x_+^{3/2}} u_0 \in L^2(\mathbb{R})$, then the solution u(t) on [0,T] is such that

$$\left\| e^{a(t) \, x_{+}^{3/2}} u(t) \right\|_{L^{2}(\mathbb{R})} \le C, \tag{2}$$

where $C = C(a_0, T, ||u_0||_{L^2(\mathbb{R})}, ||e^x u_0||_{L^2(\mathbb{R})})$, and

$$a(t) = \frac{a_0}{\sqrt{1 + 27 a_0^2 t}}, \qquad t \in [0, T].$$

Our purpose is to obtain an optimal function a(t), with $a(0) = a_0$ for which (2) holds if $e^{a_0 x_+^{3/2}} u_0 \in L^2(\mathbb{R})$.

Introduction	Theorem I: Decay of solutions	Theorem II: Optimal decay
00000000000		
Problem Statements		

We analize the behavior of the fundamental solution of the linear problem associated to IVP (1), $\,$

$$\begin{cases} \partial_t u + \partial_x^3 u = 0, \quad x, t \in \mathbb{R}, \\ u(0) = \delta, \end{cases}$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Introduction	Theorem I: Decay of solutions	Theorem II: Optimal decay
0000000000		
Problem Statements		

We analize the behavior of the fundamental solution of the linear problem associated to IVP (1), $\,$

$$\begin{cases} \partial_t u + \partial_x^3 u = 0, \quad x, t \in \mathbb{R}, \\ u(0) = \delta, \end{cases}$$

which is

$$S_t(x) = \frac{1}{\sqrt[3]{3t}} A\left(\frac{x}{\sqrt[3]{3t}}\right),$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

where A is the Airy function.

Introduction
000000000000

Theorem I: Decay of solutions 00000000000 Theorem II: Optimal decay

(日) (日) (日) (日) (日) (日) (日) (日)

Problem Statements

It is known that, for x > 0,

$$S_t(x) \sim x^{-1/4} t^{-1/4} e^{-\frac{2}{3\sqrt{3}} \frac{x^{3/2}}{\sqrt{t}}}.$$

(日) (日) (日) (日) (日) (日) (日) (日) (日)

Problem Statements

Introduction

It is known that, for x > 0,

$$S_t(x) \sim x^{-1/4} t^{-1/4} e^{-\frac{2}{3\sqrt{3}} \frac{x^{3/2}}{\sqrt{t}}}.$$

The previous exponent is $a_0 x^{3/2}$ at the instant $t_0 = \frac{27}{4a_0^2}$. If we take t_0 as the initial time and measure time t from that instant on, the fundamental solution at t will be

$$u(t)(x) = S_{t_0+t}(x) \sim x^{-1/4} (t_0+t)^{-1/4} e^{-\frac{a_0}{\sqrt{1+\frac{27}{4}a_0^2 t}}x^{3/2}}, \qquad x > 0, \ t > -t_0.$$

troduction	Theorem I: Decay of solutions	Theorem II: Optimal dec
0000000000	0000000000	000000000

In this thesis we will prove that the function

Problem Statements

$$a(t) = \frac{a_0}{\sqrt{1 + \frac{27}{4}a_0^2t}}$$

produces the optimal decay of exponential order 3/2 to the right of the *x*-axis, as *t* evolves, when the initial datum satisfies $e^{a_0 x_+^{3/2}} u_0 \in L^2(\mathbb{R})$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

 Theorem I: Decay of solutions

Theorem II: Optimal decay

Problem Statements

More precisely:

Introduction	Theorem I: Decay of solutions	Theorem II:
0000000000		

More precisely:

Theorem I

For $u_0 \in L^2(\mathbb{R})$ and T > 0, let $u \in C([0,T]; L^2(\mathbb{R}))$ be the solution of the IVP (1) with $u(0) = u_0$. Let us suppose that for $a_0 > 0$,

$$e^{a_0 x_+^{3/2}} u_0 \in L^2(\mathbb{R}).$$

Then

$$\left\| e^{a(t) \, x_+^{3/2}} u(t) \right\|_{L^2(\mathbb{R})} \le C \left\| e^{a_0 \, x_+^{3/2}} u_0 \right\|_{L^2(\mathbb{R})}, \qquad \text{for every } t \in [0,T],$$

where

$$a(t) = \frac{a_0}{\sqrt{1 + \frac{27}{4}a_0^2 t}}, \qquad t \in [0, T],$$

and $C = C(a_0, T, ||u_0||_{L^2(\mathbb{R})}, ||e^x u_0||_{L^2(\mathbb{R})}).$

troduction	Theorem I: Decay of solutions	Theorem II: Optimal decay
00000000		

Our second result establishes that the function a(t) obtained in Theorem I is optimal.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Introduction

Our second result establishes that the function a(t) obtained in Theorem I is optimal.

Theorem II

For T > 0, $a_0 > 0$ and $0 < \epsilon < \frac{1}{3}a_0$, there exist $u_0 \in \mathcal{S}(\mathbb{R})$ with $e^{a_0 x_+^{3/2}} u_0 \in L^2(\mathbb{R})$ and C > 0 such that the solution u on [0,T] of the *IVP* (1) with initial datum u_0 satisfies

 $C e^{-g(t)(a_0+\epsilon) x^{3/2}} \le u(t)(x), \quad \text{for every } t \in [0,T] \text{ and every } x > 0.$

In particular, $e^{g(t)(a_0+\epsilon)x_+^{3/2}}u(t) \notin L^2(\mathbb{R})$, for every $t \in [0,T]$.

Theorem I: Decay of solutions

Theorem II: Optimal decay 000000000

We regularize the initial datum of the IVP (1)

Theorem I: Decay of solutions

Theorem II: Optimal decay

ション ふゆ アメリア メリア ション

We regularize the initial datum of the IVP (1)

We consider a function $\rho \in C_0^{\infty}(\mathbb{R})$ with $\rho \ge 0$, $supp(\rho) \subset [-1,1]$ and such that

$$\int_{\mathbb{R}} \rho \, dx = 1.$$

For $\epsilon \in (0, 1)$, we define

$$\begin{split} \rho_{\epsilon} &:= \frac{1}{\epsilon} \, \rho\left(\frac{\cdot}{\epsilon}\right) \quad \text{and} \\ u_0^{\epsilon}(x) &:= \rho_{\epsilon} \ast u_0(\cdot + \epsilon)(x) = \int_{\mathbb{R}} \rho_{\epsilon}(y) \, u_0(x + \epsilon - y) \, dy. \end{split}$$

Theorem I: Decay of solutions

Theorem II: Optimal decay 0000000000

We regularize the initial datum of the IVP (1)

We consider a function $\rho \in C_0^{\infty}(\mathbb{R})$ with $\rho \ge 0$, $supp(\rho) \subset [-1,1]$ and such that

$$\int_{\mathbb{R}} \rho \, dx = 1.$$

For $\epsilon \in (0, 1)$, we define

$$\begin{split} \rho_\epsilon &:= \frac{1}{\epsilon} \, \rho\left(\frac{\cdot}{\epsilon}\right) \quad \text{and} \\ u_0^\epsilon(x) &:= \rho_\epsilon \ast u_0(\cdot + \epsilon)(x) = \int_{\mathbb{R}} \rho_\epsilon(y) \, u_0(x + \epsilon - y) \, dy. \end{split}$$

Proof of Theorem I

Presentation

Theorem I: Decay of solutions •••••••

Theorem II: Optimal decay 0000000000

ション ふゆ アメリア メリア ション

1) Introduction

- Precedents
- Problem Statements
- 2 Theorem I: Decay of solutions• Proof of Theorem I
- Theorem II: Optimal decay
 Some previous results
 - Proof of Theorem II

00000 00000000 00000000	Theorem I: Decay of solutions	Theorem II: Optin
	0000000000	

Proof of Theorem I

At first we only consider that a is a differentiable function on [0, T], with $a(0) = a_0$.

◆□▶ ◆□▶ ◆目▶ ◆目▶ ④�?

Theorem I: Decay of solutions	Theorem II: Optin
0000000000	

Proof of Theorem I

At first we only consider that a is a differentiable function on [0, T], with $a(0) = a_0$.

We are going to make an a priori estimate of $u \equiv u_m$. For this, let us take a truncation function $\omega \in C^{\infty}(\mathbb{R})$, like it is shown in the next figure:

ション ふゆ アメリア メリア ション

Theorem	I:	Decay	\mathbf{of}	solutions
0000000	oc	000		

ション ふゆ アメリア メリア ション

Proof of Theorem I

At first we only consider that a is a differentiable function on [0, T], with $a(0) = a_0$.

We are going to make an a priori estimate of $u \equiv u_m$. For this, let us take a truncation function $\omega \in C^{\infty}(\mathbb{R})$, like it is shown in the next figure:

	Theorem I: Decay of solutions	Theorem II: Optimal decay
	0000000000	
Proof of Theorem I		

For each positive integer n, we consider a function ψ_n defined in the following fashion:

$$\psi(x,t) \equiv \psi_n(x,t) := \begin{cases} \omega(x) a(t) x^{3/2}, & \text{if } x \le n, \\ \log \left(P_n(x,t) \right), & \text{if } x > n, \end{cases}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ 三回□ のへぐ

	Theorem I: Decay of solutions	Theorem II: Optimal decay
	0000000000	
Deset of Thesees I		

For each positive integer n, we consider a function ψ_n defined in the following fashion:

$$\psi(x,t) \equiv \psi_n(x,t) := \begin{cases} \omega(x) a(t) x^{3/2}, & \text{if } x \le n, \\ \log\left(P_n(x,t)\right), & \text{if } x > n, \end{cases}$$

where, for fixed $t \in [0, T]$, $P_n(x, t)$ is the second degree polynomial in x which coincides with $e^{\omega(x) a(t) x^{3/2}} = e^{a(t) x^{3/2}}$ at x = n together with its two first derivatives.

000000000 [°]	

For each positive integer n, we consider a function ψ_n defined in the following fashion:

$$\psi(x,t) \equiv \psi_n(x,t) := \begin{cases} \omega(x) a(t) x^{3/2}, & \text{if } x \le n, \\ \log \left(P_n(x,t) \right), & \text{if } x > n, \end{cases}$$

where, for fixed $t \in [0, T]$, $P_n(x, t)$ is the second degree polynomial in x which coincides with $e^{\omega(x) a(t) x^{3/2}} = e^{a(t) x^{3/2}}$ at x = n together with its two first derivatives.

For a fixed positive integer m and for $n \in \mathbb{N}$, let us define

$$f \equiv f_{m,n} = u_m \, e^{\psi_n} = u \, e^{\psi}.$$

Theorem I: Decay of solutions	Theorem II: Optimal decay
0000000000	

(日) (日) (日) (日) (日) (日) (日) (日) (日)

Proof of Theorem I

Then, $u = e^{-\psi} f$. We replace u in the KdV equation and multiply by e^{ψ} . Next we multiply by f and integrate by parts with respect to the variable x, on \mathbb{R} , to obtain:

Theorem I: Decay of solutions

Fheorem II: Optimal decay

Proof of Theorem I

Then, $u = e^{-\psi} f$. We replace u in the KdV equation and multiply by e^{ψ} . Next we multiply by f and integrate by parts with respect to the variable x, on \mathbb{R} , to obtain:

$$\frac{1}{2}\frac{d}{dt}\int f^2 + 3\int \psi_x (\partial_x f)^2 - \int (\psi_t + \psi_x^3 + \psi_{xxx})f^2 - \frac{2}{3}\int e^{-\psi}\psi_x f^3 = 0.$$
Theorem I: Decay of solutions

Fheorem II: Optimal decay

ション ふゆ アメリア メリア ション

Proof of Theorem I

Then, $u = e^{-\psi} f$. We replace u in the KdV equation and multiply by e^{ψ} . Next we multiply by f and integrate by parts with respect to the variable x, on \mathbb{R} , to obtain:

$$\frac{1}{2}\frac{d}{dt}\int f^2 + 3\int \psi_x (\partial_x f)^2 - \int (\psi_t + \psi_x^3 + \psi_{xxx})f^2 - \frac{2}{3}\int e^{-\psi}\psi_x f^3 = 0.$$

Hence,

$$\frac{1}{2}\frac{d}{dt}\int f^2 \leq \int (\psi_t + \psi_x^3 + \psi_{xxx})f^2 + \frac{2}{3}\int e^{-\psi}\psi_x f^3.$$

Theorem I: Decay of solutions

Fheorem II: Optimal decay

A D M A

Proof of Theorem I

Introduction

Then, $u = e^{-\psi} f$. We replace u in the KdV equation and multiply by e^{ψ} . Next we multiply by f and integrate by parts with respect to the variable x, on \mathbb{R} , to obtain:

$$\frac{1}{2}\frac{d}{dt}\int f^2 + 3\int \psi_x (\partial_x f)^2 - \int (\psi_t + \psi_x^3 + \psi_{xxx})f^2 - \frac{2}{3}\int e^{-\psi}\psi_x f^3 = 0.$$

Hence,

$$\frac{1}{2}\frac{d}{dt}\int f^2 \le \int (\psi_t + \psi_x^3 + \psi_{xxx})f^2 + \frac{2}{3}\int e^{-\psi}\psi_x f^3.$$

Our objective is to apply Gronwall's lemma to estimate $\int f^2$.

	Theorem I: Decay of solutions	Theorem II: Optimal decay
	0000000000	
Proof of Theorem I		

We start by studying the terms on the right hand side of \clubsuit for $1 \le x \le n$, where we know that $\psi = a x^{3/2}$. Then, the first integrand is

00000000 00000000 00000000000000000000	oduction	Theorem I: Decay of solutions	Theorem II: Optimal decay
		0000000000	

Proof of Theorem I

We start by studying the terms on the right hand side of \clubsuit for $1 \le x \le n$, where we know that $\psi = a x^{3/2}$. Then, the first integrand is

$$\left(a'x^{3/2} + \frac{27}{8}a^3x^{3/2} - \frac{3}{8}a\,x^{-3/2}\right)f^2.$$

 Interview
 Theorem I: Decay of solutions
 Theorem II: Optimal decay

 000000
 000000000
 000000000

Proof of Theorem I

We start by studying the terms on the right hand side of \clubsuit for $1 \le x \le n$, where we know that $\psi = a x^{3/2}$. Then, the first integrand is

$$\left(a'x^{3/2} + \frac{27}{8}a^3x^{3/2} - \frac{3}{8}a\,x^{-3/2}\right)f^2.$$

This leads us to state the initial value problem

$$\begin{cases} a'(t) + \frac{27}{8} a(t)^3 = 0, \\ a(0) = a_0, \end{cases}$$

Proof of Theorem I

We start by studying the terms on the right hand side of \clubsuit for $1 \le x \le n$, where we know that $\psi = a x^{3/2}$. Then, the first integrand is

$$\left(a'x^{3/2} + \frac{27}{8}a^3x^{3/2} - \frac{3}{8}a\,x^{-3/2}\right)f^2.$$

This leads us to state the initial value problem

$$\begin{cases} a'(t) + \frac{27}{8} a(t)^3 = 0, \\ a(0) = a_0, \end{cases}$$

whose solution is given by

$$a(t) = \frac{a_0}{\sqrt{1 + \frac{27}{4}a_0^2 t}}.$$

	Theorem I: Decay of solutions	Theorem II: Optimal decay
	0000000000	
Des of of The second I		

In the interval [1,n] we find that the integrals on the right hand side of \clubsuit are bounded by

$$a_0 \|x_+^{1/2} u(t)\|_{L^{\infty}([0,\infty))} \int_{\mathbb{R}} f^2.$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Theorem I: Decay of solutions	Theorem II: Optimal decay
00000000000	

Next, we consider the contribution of the interval (n, ∞) to the integrals of the right hand side of expression \clubsuit .

 Introduction
 Theorem I: Decay of solutions
 Theorem II: Optimal decay

 cocococococo
 cocococococo
 cocococococo

 Proof of Theorem I

Next, we consider the contribution of the interval (n, ∞) to the integrals of the right hand side of expression **\clubsuit**.

From the definition of the polynomial $P \equiv P_n$, we have that

$$\begin{split} P(x,t) &= \left[1 + \frac{3}{2} a n^{1/2} (x-n) + \left(\frac{3}{8} a n^{-1/2} + \frac{9}{8} a^2 n\right) (x-n)^2\right] e^{a n^{3/2}},\\ P_t(x,t) &= a' \left[n^{3/2} + \left(\frac{3}{2} n^{1/2} + \frac{3}{2} a n^2\right) (x-n) \\ &+ \left(\frac{3}{8} n^{-1/2} + \frac{21}{8} a n + \frac{9}{8} a^2 n^{5/2}\right) (x-n)^2\right] e^{a n^{3/2}},\\ P_x(x,t) &= \left[\frac{3}{2} a n^{1/2} + \left(\frac{3}{4} a n^{-1/2} + \frac{9}{4} a^2 n\right) (x-n)\right] e^{a n^{3/2}},\\ P_{xx}(x,t) &= \left(\frac{3}{4} a n^{-1/2} + \frac{9}{4} a^2 n\right) e^{a n^{3/2}}. \end{split}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ 三回□ のへぐ

Theorem I: Decay of solutions

Theorem II: Optimal decay

ション ふゆ アメリア メリア ション

Proof of Theorem I

Seeing the previous polynomials as perturbations of certain polynomials in the variable $r := a n^{1/2} (x - n)$, and using a continuity argument we find that for $x \in (n, \infty)$ and n > N (where N is certain large positive integer),

$$\psi_t + \psi_x^3 + \psi_{xxx} = \frac{1}{P^3} \left[P^2 P_t + 3 P_x^3 - 3 P P_x P_{xx} \right] < 0.$$

Theorem II: Optimal decay

ション ふゆ アメリア メリア ション

Proof of Theorem I

Seeing the previous polynomials as perturbations of certain polynomials in the variable $r := a n^{1/2} (x - n)$, and using a continuity argument we find that for $x \in (n, \infty)$ and n > N (where N is certain large positive integer),

$$\psi_t + \psi_x^3 + \psi_{xxx} = \frac{1}{P^3} \left[P^2 P_t + 3 P_x^3 - 3 P P_x P_{xx} \right] < 0.$$

Furthermore,

$$\left|\frac{2}{3}\int_{n}^{\infty}e^{-\psi}\psi_{x}f^{3}\right| \leq (1+a_{0})\left\|x_{+}^{1/2}u(t)\right\|_{L^{\infty}([0,\infty))}\int_{\mathbb{R}}f^{2}.$$

Theorem I: Decay of solutions

Theorem II: Optimal decay

ション ふゆ アメリア メリア ション

Proof of Theorem I

Introduction

Seeing the previous polynomials as perturbations of certain polynomials in the variable $r := a n^{1/2} (x - n)$, and using a continuity argument we find that for $x \in (n, \infty)$ and n > N (where N is certain large positive integer),

$$\psi_t + \psi_x^3 + \psi_{xxx} = \frac{1}{P^3} \left[P^2 P_t + 3 P_x^3 - 3 P P_x P_{xx} \right] < 0.$$

Furthermore,

$$\left|\frac{2}{3}\int_{n}^{\infty}e^{-\psi}\psi_{x}f^{3}\right| \leq (1+a_{0})\left\|x_{+}^{1/2}u(t)\right\|_{L^{\infty}([0,\infty))}\int_{\mathbb{R}}f^{2}.$$

Hence, the integrals on the right hand side of \clubsuit performed on the interval (n, ∞) are bounded by

$$(1+a_0) \left\| x_+^{1/2} u(t) \right\|_{L^{\infty}([0,\infty))} \int_{\mathbb{R}} f^2.$$

	Theorem I: Decay of solutions	Theorem II: Optimal decay
	000000000000	
Proof of Theorem I		

Putting together all the results obtained on the right hand side of \clubsuit we conclude that

$$\frac{1}{2}\frac{d}{dt}\int f^2 \le C\left(1+a_0^3\right)\left(1+\|(1+x_+^{1/2})u(t)\|_{L^\infty([0,\infty))}\right)\int f^2.$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

0000000000000	
Theorem I: Decay of solutions	Theorem II: Optimal decay

Putting together all the results obtained on the right hand side of \clubsuit we conclude that

$$\frac{1}{2}\frac{d}{dt}\int f^2 \le C\left(1+a_0^3\right)\left(1+\|(1+x_+^{1/2})u(t)\|_{L^{\infty}([0,\infty))}\right)\int f^2.$$

Since $1 + x_{+}^{1/2} \leq 2e^{x_{+}}$, using a Sobolev embedding theorem and returning to the notation $u = u_{m}$, we have that

$$\frac{1}{2}\frac{d}{dt}\int e^{2\psi_n}u_m(t)^2\,dx \le \beta_m(t)\int e^{2\psi_n}u_m(t)^2\,dx,$$

where $\beta_m(t) = C (1 + a_0^3) \left(1 + \|e^x u_m(t)\|_{L^2(\mathbb{R})} + \|e^x \partial_x u_m(t)\|_{L^2(\mathbb{R})} \right)$, and *C* is a universal constant.

▲□▶ ▲□▶ ▲□▶ ▲□▶ 三回□ のへぐ

Proof of Theorem I

It can be seen that

$$\int_0^T \beta_m(s) \, ds \le C \, (1+a_0^3)(1+T) \, e^{KT} \, \|e^x u_0\|_{L^2(\mathbb{R})} \,,$$

where K is some constant which only depends on $||u_0||_{L^2(\mathbb{R})}$.

Proof of Theorem I

It can be seen that

$$\int_0^T \beta_m(s) \, ds \le C \, (1+a_0^3)(1+T) \, e^{KT} \, \|e^x u_0\|_{L^2(\mathbb{R})} \, ,$$

where K is some constant which only depends on $||u_0||_{L^2(\mathbb{R})}$.

Applying Gronwall's lemma, we conclude that

$$\int e^{2\psi_n(x,t)} u_m(t)^2 \, dx \le \exp\left(\int_0^T \beta_m(s) \, ds\right) \int e^{2\psi_n(x,0)} u_m(0)^2 \, dx$$
$$\le C \int e^{2\psi_n(x,0)} u_m(0)^2 \, dx,$$

where $C = C\left(a_0, T, \|u_0\|_{L^2(\mathbb{R})}, \|e^x u_0\|_{L^2(\mathbb{R})}\right).$

◆□> <四> <=> <=> <=> <=> <=> <=> <<=>

▲□▶ ▲□▶ ▲□▶ ▲□▶ 三回□ のへぐ

We apply Fatou's lemma, letting $n \to \infty$, to get that

$$\int_{\mathbb{R}} \left(e^{a(t) x_{+}^{3/2}} u_m(t) \right)^2 \, dx \le C \int_{\mathbb{R}} \left(e^{a_0 x_{+}^{3/2}} u_0 \right)^2 \, dx,$$

for every $t \in [0, T]$, and for all $m \in \mathbb{N}$.

ション ふゆ アメリア メリア ション

Introduction

We apply Fatou's lemma, letting $n \to \infty$, to get that

$$\int_{\mathbb{R}} \left(e^{a(t) x_{+}^{3/2}} u_m(t) \right)^2 \, dx \le C \int_{\mathbb{R}} \left(e^{a_0 x_{+}^{3/2}} u_0 \right)^2 \, dx,$$

for every $t \in [0, T]$, and for all $m \in \mathbb{N}$.

There is a subsequence $u_{m_j}(t)$ such that $u_{m_j}(t)(x) \to u(t)(x)$, for almost every $x \in \mathbb{R}$, when $j \to \infty$. Thus, applying Fatou's lemma once again, for this subsequence, we obtain that

$$\int_{\mathbb{R}} \left(e^{a(t) x_{+}^{3/2}} u(t) \right)^{2} dx \le C \int_{\mathbb{R}} \left(e^{a_{0} x_{+}^{3/2}} u_{0} \right)^{2} dx, \text{ for all } t \in [0, T].$$

	Theorem I: Decay of solutions	Theorem II: Optimal
	0000000000	
Proof of Theorem I		

For the linear problem associated to the IVP (1), we can obtain a result similar to that in Theorem I.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

	Theorem I: Decay of solutions	Theorem II: Optimal decay
	0000000000	
Proof of Theorem I		

For the linear problem associated to the IVP (1), we can obtain a result similar to that in Theorem I.

If u is a solution of the linear problem associated to (1) and $e^{a_0 x_+^{3/2}} u(0) \in L^2(\mathbb{R})$, then

$$\left\|e^{a(t)\,x_+^{3/2}}u(t)\right\|_{L^2(\mathbb{R})} \leq C \left\|e^{a_0\,x_+^{3/2}}u(0)\right\|_{L^2(\mathbb{R})},$$

ション ふゆ アメリア メリア ション

where $C = C(a_0, T)$.

Theorem I: Decay of solutions

ション ふゆ アメリア メリア ション

Some previous results

Presentation

1 Introduction

- Precedents
- Problem Statements
- 2 Theorem I: Decay of solutions
 Proof of Theorem I
- Theorem II: Optimal decay
 Some previous results
 Proof of Theorem II

Theorem I: Decay of solutions

Theorem II: Optimal decay 0 = 0 = 0 = 0

Some previous results

In the proof of Theorem II we will construct a function of the Schwartz class which satisfies the conclusions of the theorem. For this function it will be important to study the exponential decay of order 3/2 of its first and second derivatives.

Theorem I: Decay of solutions

Theorem II: Optimal decay 0 = 0 = 0 = 0

◆□▶ ◆□▶ ★□▶ ★□▶ ★□▶ ◆□

Some previous results

In the proof of Theorem II we will construct a function of the Schwartz class which satisfies the conclusions of the theorem. For this function it will be important to study the exponential decay of order 3/2 of its first and second derivatives.

Proposition

For T > 0 and $u_0 \in \mathcal{S}(\mathbb{R})$ let u be the solution on [0,T] of the IVP (1) with initial datum u_0 . If $a_0 \ge 0$ and $e^{a_0 x_+^{3/2}} \partial_x^j u_0 \in L^2(\mathbb{R})$, then there exist constants C and M, such that

$$\left\| e^{a(t) \, x_+^{3/2}} \partial_x^j u(t) \right\|_{L^2(\mathbb{R})} \le e^{MT} \left\| e^{a_0 \, x_+^{3/2}} \partial_x^j u_0 \right\|_{L^2(\mathbb{R})}, \quad \text{for every } t \in [0,T],$$

where
$$j = 1, 2, and$$

 $M = C(1+a_0^3) \sup_{t \in [0,T]} \left[1 + \|(1+x_+^{1/2})u(t)\|_{L^{\infty}([0,\infty))} + \|\partial_x u(t)\|_{L^{\infty}(\mathbb{R})} \right],$
and C is an absolute constant.

Theorem I: Decay of solutions 00000000000 ション ふゆ アメリア メリア ション

Proof of Theorem II

Presentation

1 Introduction

- Precedents
- Problem Statements
- 2 Theorem I: Decay of solutions• Proof of Theorem I

• Proof of Theorem II

Theorem I: Decay of solutions 00000000000 (日) (日) (日) (日) (日) (日) (日) (日) (日)

Proof of Theorem II

Let us take a function $\varphi \in C_c^{\infty}(\mathbb{R})$ such that $\varphi \ge 0$, $supp(\varphi) \subset (-1,1)$ and $\int_{\mathbb{R}} \varphi = 1$, and, for $\delta \in (0, 1/2)$ let $\varphi_{\delta} = \frac{1}{\delta} \varphi\left(\frac{\cdot}{\delta}\right)$.

	Theorem I: Decay of solutions	Theorem II: Optimal decay
000000000		000000000
roof of Theorem II		

Let us take a function $\varphi \in C_c^{\infty}(\mathbb{R})$ such that $\varphi \ge 0$, $supp(\varphi) \subset (-1, 1)$ and $\int_{\mathbb{R}} \varphi = 1$, and, for $\delta \in (0, 1/2)$ let $\varphi_{\delta} = \frac{1}{\delta} \varphi\left(\frac{\cdot}{\delta}\right)$.

For $\alpha > 0$ small, which will be properly chosen later, we consider problem (1) with initial datum

$$u_{0,\alpha} \equiv u_0 = S(t_0)(\alpha \varphi_\delta),$$

where

$$t_0 = \frac{4}{27(a_0 + \epsilon/3)^2}.$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Introduction	Theorem I: Decay of solutions	Theorem II: Optimal decay
Proof of Theorem II		

From the theory of global well-posedness on spaces $H^s(\mathbb{R})$, for T > 0, the IVP (1) has a unique solution $u_{\alpha} \equiv u \in C([0,T]; \mathcal{S}(\mathbb{R}))$, which, given its regularity, satisfies the Duhamel's formula pointwise; that is,

Introduction	Theorem I: Decay of solutions	Theorem II: Optimal decay
0000000000	00000000000	000000000
Proof of Theorem II		

From the theory of global well-posedness on spaces $H^s(\mathbb{R})$, for T > 0, the IVP (1) has a unique solution $u_{\alpha} \equiv u \in C([0,T]; \mathcal{S}(\mathbb{R}))$, which, given its regularity, satisfies the Duhamel's formula pointwise; that is,

$$u(t) = S(t) u_0 - \int_0^t S(t - \tau) (u(\tau) \partial_x u(\tau)) d\tau$$

$$\equiv S(t) u_0 - F(t), \text{ for every } t \in [0, T],$$

ション ふゆ アメリア メリア ション

Introduction	Theorem I: Decay of solutions	Theorem II: Optimal decay
00000000000	00000000000	0000000000
Dessf of These II		

Using the properties of the convolution, the asymptotic behavior of the Airy function, and the previous Remarks, we prove that for $\delta > 0$ small enough, x > 1 and $t \in [0, T]$,

Proof of Theorem II		
0000000000	0000000000	000000000
	Theorem I: Decay of solutions	Theorem II: Optimal decay

Using the properties of the convolution, the asymptotic behavior of the Airy function, and the previous Remarks, we prove that for $\delta > 0$ small enough, x > 1 and $t \in [0, T]$,

(日) (日) (日) (日) (日) (日) (日) (日) (日)

$$\overline{C} \alpha e^{-g(t)(a_0^+)x^{3/2}} \leq [S(t)u_0](x) \leq C \alpha e^{-g(t)(a_0+\epsilon/4)x^{3/2}},$$

here C and \overline{C} are independent of α and of $t \in [0, T]$.

W

0000000000	0000000000	000000000
	Theorem I: Decay of solutions	Theorem II: Optimal decay

Our next step is to show that the integral term F(t) in the Duhamel's formula decays as $\alpha^2 e^{-\beta x^{3/2}}$, for some $\beta > g(t) (a_0^+)$, for every $t \in [0, T]$.

Deset of Theses II		
		0000000000
	Theorem I: Decay of solutions	Theorem II: Optimal decay

Our next step is to show that the integral term F(t) in the Duhamel's formula decays as $\alpha^2 e^{-\beta x^{3/2}}$, for some $\beta > g(t)(a_0^+)$, for every $t \in [0,T]$.

Let us fix a_1 and a_2 such that $a_0^- < a_2 < a_1 < a_0$.

Theorem I: Decay of solutions	Theorem II: Optimal decay	
	0000000000	

Let us recall that the integral term ${\cal F}(t)$ in the Duhamel's formula is given by

$$F(t) = \int_0^t S(t-\tau) \left(u(\tau) \partial_x u(\tau) \right) \, d\tau, \qquad t \in [0,T].$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

	Theorem I: Decay of solutions	Theorem II: Optimal decay
		0000000000
Proof of Theorem II		

Let us recall that the integral term F(t) in the Duhamel's formula is given by

$$F(t) = \int_0^t S(t-\tau) \left(u(\tau) \partial_x u(\tau) \right) \, d\tau, \qquad t \in [0,T].$$

In order to estimate F(t), we first analyze $\partial_x F(t)$:

$$\partial_x F(t) = \int_0^t S(t-\tau) f(\tau) \, d\tau,$$

where $f(\tau) \equiv \partial_x \left(u(\tau) \partial_x u(\tau) \right) = \left(\partial_x u(\tau) \right)^2 + u(\tau) \partial_x^2 u(\tau).$

うせん 正則 ふぼう ふぼう ふむ くしゃ

Breef of Theorem II		000000000
00000000000	0000000000	000000000
	Theorem I: Decay of solutions	Theorem II: Optimal decay

In virtue of the Fundamental Theorem of Calculus, Fubini's Theorem, Cauchy-Schwarz inequality, and some estimates, we obtain that for $x\geq 0$

 $|F(t)(x)| \le C \,\alpha^2 \, T \, e^{-g(t)(2a_0^-) \, x^{3/2}}.$

	Theorem I: Decay of solutions	Theorem II: Optimal decay
		0000000000
Design of The server II		

In virtue of the Fundamental Theorem of Calculus, Fubini's Theorem, Cauchy-Schwarz inequality, and some estimates, we obtain that for $x\geq 0$

$$|F(t)(x)| \le C \,\alpha^2 \, T \, e^{-g(t)(2a_0^-) \, x^{3/2}}$$

Let us notice that if $\epsilon < \frac{1}{3}a_0$, then $2a_0^- > a_0^+$. Therefore, from the last estimate,

$$F(t)(x) \le C \,\alpha^2 e^{-g(t)(a_0^+) \,x_+^{3/2}},$$

with C independent of $x > 1, t \in [0, T]$, and of α .
▲□▶ ▲□▶ ▲□▶ ▲□▶ 三回□ のへぐ

Proof of Theorem II

it follows that for x > 0,

$$u(t)(x) \ge \overline{C} \,\alpha e^{-g(t)(a_0^+) \, x^{3/2}} - C \,\alpha^2 e^{-g(t)(a_0^+) \, x^{3/2}},$$

where C and \overline{C} do not depend upon $x > 0, t \in [0, T]$, and $\alpha > 0$.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Proof of Theorem II

it follows that for x > 0,

$$u(t)(x) \ge \overline{C} \,\alpha e^{-g(t)(a_0^+) \, x^{3/2}} - C \,\alpha^2 e^{-g(t)(a_0^+) \, x^{3/2}},$$

where C and \overline{C} do not depend upon $x > 0, t \in [0, T]$, and $\alpha > 0$. Thus, by taking $\alpha = \overline{C}/2C$, we obtain that, for x > 0

$$u(t)(x) \ge \frac{\overline{C}^2}{4C} e^{-g(t)(a_0^+)x^{3/2}}.$$

Foundations on Geometry and Mechanics ${\scriptstyle 0000000000}$

Poisson Structures 00000000000 Integrable Systems 00000000

Part II

POISSON BRACKETS IN ALGEBRAIC GEOMETRY

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回日 のへで

Symplectic Algebra

Presentation

Poisson Structures 00000000000 Integrable Systems 00000000

4 Foundations on Geometry and Mechanics

- Symplectic Algebra
- Symplectic Manifolds
- Hamiltonian mechanics and Noether's Theorem

Poisson Structures

- General definitions
- Poisson varieties and Poisson manifolds

6 Integrable Systems

- Geometric precedent
- Algebraic integrability

Foundations on Geometry and Mechanics	Poisson Structures	Integrable Systems
000000000		
Symplectic Algebra		

Let \mathcal{V} be a vector space. A 2-covector ω on \mathcal{V} is said to be *non-degenerate* if for every nonzero vector $v \in \mathcal{V}$, there exists $w \in \mathcal{V}$ such that $\omega(v, w) \neq 0$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ 三回□ のへぐ

Foundations on Geometry and Mechanics	Poisson Structures	Integrable Systems
000000000		
Symplectic Algebra		

Let \mathcal{V} be a vector space. A 2-covector ω on \mathcal{V} is said to be *non-degenerate* if for every nonzero vector $v \in \mathcal{V}$, there exists $w \in \mathcal{V}$ such that $\omega(v, w) \neq 0$.

Example

Let \mathcal{V} be a real vector space of dimension 2n, and let us fix a basis $\{A_1, B_1, \ldots, A_n, B_n\}$ for \mathcal{V} . Let $\{\alpha_1, \beta_1, \ldots, \alpha_n, \beta_n\}$ be the corresponding dual basis, for \mathcal{V}^* , and $\omega \in \bigwedge^2(\mathcal{V}^*)$ be the 2-covector defined by

$$\omega = \sum_{j=1}^{n} \alpha_j \wedge \beta_j.$$

 (\mathcal{V}, ω) is a symplectic vector space.

Symplectic Algebra

Poisson Structures 0000000000 Integrable Systems 00000000

ション ふゆ アメリア メリア ション

Proposition (Canonical form for a symplectic tensor)

Let ω be a symplectic tensor on a vector space \mathcal{V} over \mathbb{R} , of dimension m. Then \mathcal{V} has even dimension m = 2n, and there exists a basis $\{A_1, B_1, \ldots, A_n, B_n\}$ for \mathcal{V} such that

$$\omega = \sum_{j=1}^{n} \alpha_j \wedge \beta_j,$$

where $\{\alpha_1, \beta_1, \ldots, \alpha_n, \beta_n\}$ is the corresponding dual basis.

Symplectic Algebra

Poisson Structures 0000000000 Integrable Systems 00000000

Proposition (Canonical form for a symplectic tensor)

Let ω be a symplectic tensor on a vector space \mathcal{V} over \mathbb{R} , of dimension m. Then \mathcal{V} has even dimension m = 2n, and there exists a basis $\{A_1, B_1, \ldots, A_n, B_n\}$ for \mathcal{V} such that

$$\omega = \sum_{j=1}^{n} \alpha_j \wedge \beta_j,$$

where $\{\alpha_1, \beta_1, \ldots, \alpha_n, \beta_n\}$ is the corresponding dual basis.

Proposition

Let \mathcal{V} be a vector space of dimension 2n, and $\omega \in \bigwedge^2(\mathcal{V}^*)$. Then ω is a symplectic tensor if and only if $\omega^n = \omega \wedge \cdots \wedge \omega \neq 0$.

◆□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶

Foundations on Geometry and Mechanics $\circ\circ\circ\bullet\circ\circ\circ\circ\circ\circ$

Symplectic Manifolds

Presentation

Poisson Structures 00000000000 Integrable Systems 00000000

4 Foundations on Geometry and Mechanics

- Symplectic Algebra
- Symplectic Manifolds
- Hamiltonian mechanics and Noether's Theorem

Poisson Structures

- General definitions
- Poisson varieties and Poisson manifolds

6 Integrable Systems

- Geometric precedent
- Algebraic integrability

Foundations	on	Geometry	and	Mechanics
0000000000000				

Symplectic Manifolds

Poisson Structures 00000000000 Integrable Systems 00000000

▲□▶ ▲□▶ ▲□▶ ▲□▶ 三回□ のへぐ

A symplectic manifold is a smooth manifold M with a non-degenerate closed 2-form.

Foundations	on	Geometry	and	Mechanics
0000000000				

Symplectic Manifolds

Poisson Structures 0000000000

(日) (日) (日) (日) (日) (日) (日) (日) (日)

A symplectic manifold is a smooth manifold M with a non-degenerate closed 2-form.

Example (Local model)

Let $M = \mathbb{R}^{2n}$ with the standard coordinates $x_1, \ldots, x_n, y_1, \ldots, y_n$. The form

$$\omega = \sum_{j=1}^{n} dx_j \wedge dy_j$$

is symplectic.

Foundations on Geometry and Mechanics	Poisson Structures	Integrable Systems
000000000		
Symplectic Manifolds		

Let Q be any n-dimensional manifold, and $M = T^*Q$ its cotangent bundle. Let us say that $(T^*U, q_1, \ldots, q_n, p_1, \ldots, p_n)$ is a coordinate chart for M.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Foundations on Geometry and Mechanics	Poisson Structures	Integrable Systems
000000000		
Symplectic Manifolds		

Let Q be any n-dimensional manifold, and $M = T^*Q$ its cotangent bundle. Let us say that $(T^*U, q_1, \ldots, q_n, p_1, \ldots, p_n)$ is a coordinate chart for M.

We define a 2-form on T^*U by

$$\omega = \sum_{j=1}^{n} dq_j \wedge dp_j.$$

In fact, if we consider the 1-form on T^*U given by

$$\tau = \sum_{j=1}^{n} p_j \, dq_j,$$

ション ふゆ アメリア メリア ション

then $\omega = -d\tau$.

Foundations on Geometry and Mechanics $\circ\circ\circ\circ\circ\circ\circ\circ\circ$

Symplectic Manifolds

Poisson Structures 0000000000 Integrable Systems 00000000

ション ふゆ アメリア メリア ション

Theorem (Darboux's theorem)

Let (M, ω) be a symplectic manifold of dimension 2n. Then, each point $p \in M$ has a coordinate neighborhood U, with local coordinates $x_1, \ldots, x_n, y_1, \ldots, y_n$, such that

$$\omega|_U = \sum_{j=1}^n dx_j \wedge dy_j.$$

Foundations on Geometry and Mechanics	Poisson Structures	Integrable Systems
	0000000000	0000000
Hamiltonian mechanics and Noether's Theorem		
Presentation		

4 Foundations on Geometry and Mechanics

- Symplectic Algebra
- Symplectic Manifolds
- Hamiltonian mechanics and Noether's Theorem

- General definitions
- Poisson varieties and Poisson manifolds.

- Geometric precedent
- Algebraic integrability

Foundations on Geometry and Mechanics	Poisson Structures	Integrable Systems
000000000000		
Hamiltonian mechanics and Noether's Theorem		

Let X be a vector field on M. From Cartan's formula,

$$\mathcal{L}_X \omega = d(\iota_X \omega) + \iota_X(\underbrace{d\omega}_0) = d\,\iota_X \omega.$$

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Foundations on Geometry and Mechanics	Poisson Structures	Integrable Systems
000000000000		
Hamiltonian mechanics and Noether's Theorem		

Let X be a vector field on M. From Cartan's formula,

$$\mathcal{L}_X \omega = d(\iota_X \omega) + \iota_X(\underbrace{d\omega}_0) = d\,\iota_X \omega.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ 三回□ のへぐ

• X is a symplectic vector field if $\iota_X \omega$ is a closed 1-form.

Foundations on Geometry and Mechanics	Poisson Structures	Integrable Systems
000000000000000000000000000000000000000		
Hamiltonian mechanics and Noether's Theorem		

Let X be a vector field on M. From Cartan's formula,

$$\mathcal{L}_X \omega = d(\iota_X \omega) + \iota_X(\underbrace{d\omega}_0) = d\,\iota_X \omega.$$

- X is a symplectic vector field if $\iota_X \omega$ is a closed 1-form.
- X is a Hamiltonian vector field if $\iota_X \omega$ is an exact 1-form.

Given a smooth function $f \in \mathcal{C}^{\infty}(M; \mathbb{R})$, the Hamiltonian vector field associated to f is the unique vector field X_f on M which satisfies

$$\omega(X_f, \cdot) = df.$$

ション ふゆ アメリア メリア ション

Foundations on Geometry and Mechanics	Poisson Structures	Integrable Systems
00000000000		
Hamiltonian mechanics and Noether's Theorem		

$$\{\,,\}: \mathcal{C}^{\infty}(M) \times \mathcal{C}^{\infty}(M) \to \mathcal{C}^{\infty}(M),$$

which is given by

$$\{f,g\} := \omega(X_f, X_g),$$

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

for every $f, g \in \mathcal{C}^{\infty}(M)$.

Foundations on Geometry and Mechanics	Poisson Structures	Integrable Systems
00000000000		
Hamiltonian mechanics and Noether's Theorem		

$$\{\,,\}: \mathcal{C}^{\infty}(M) \times \mathcal{C}^{\infty}(M) \to \mathcal{C}^{\infty}(M),$$

which is given by

$$\{f,g\} := \omega(X_f, X_g),$$

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

for every $f, g \in \mathcal{C}^{\infty}(M)$.

In Darboux's coordinates:

Foundations on Geometry and Mechanics	Poisson Structures	Integrable Systems
00000000000		
Hamiltonian mechanics and Noether's Theorem		

$$\{\,,\}: \mathcal{C}^{\infty}(M) \times \mathcal{C}^{\infty}(M) \to \mathcal{C}^{\infty}(M),$$

which is given by

$$\{f,g\} := \omega(X_f, X_g),$$

for every $f, g \in \mathcal{C}^{\infty}(M)$.

In Darboux's coordinates:

$$X_H = \sum_{j=1}^n \left(\frac{\partial H}{\partial y_j} \frac{\partial}{\partial x_j} - \frac{\partial H}{\partial x_j} \frac{\partial}{\partial y_j} \right).$$

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Foundations on Geometry and Mechanics	Poisson Structures	Integrable Systems
00000000000		
Hamiltonian mechanics and Noether's Theorem		

$$\{\,,\}: \mathcal{C}^{\infty}(M) \times \mathcal{C}^{\infty}(M) \to \mathcal{C}^{\infty}(M),$$

which is given by

$$\{f,g\} := \omega(X_f, X_g),$$

for every $f, g \in \mathcal{C}^{\infty}(M)$.

In Darboux's coordinates:

$$X_{H} = \sum_{j=1}^{n} \left(\frac{\partial H}{\partial y_{j}} \frac{\partial}{\partial x_{j}} - \frac{\partial H}{\partial x_{j}} \frac{\partial}{\partial y_{j}} \right).$$
$$\{f, g\} = \sum_{j=1}^{n} \left(\frac{\partial f}{\partial x_{j}} \frac{\partial g}{\partial y_{j}} - \frac{\partial f}{\partial y_{j}} \frac{\partial g}{\partial x_{j}} \right)$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回日 のへで

Foundations on Geometry and Mechanics	Poisson Structures	Integrable Systems
0000000000		
Hamiltonian mechanics and Noether's Theorem		

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

In a Hamiltonian system (M, ω, H) we have the notions of

- A conserved quantity.
- An *infinitesimal symmetry*.

Foundations on Geometry and Mechanics	Poisson Structures	Integrable Systems
0000000000		
Hamiltonian mechanics and Noether's Theorem		

In a Hamiltonian system (M, ω, H) we have the notions of

- A conserved quantity.
- An *infinitesimal symmetry*.

Theorem (Noether's theorem)

Let (M, ω, H) be a Hamiltonian system. If f is any conserved quantity, then its Hamiltonian vector field X_f is an infinitesimal symmetry. Conversely, if $\mathcal{H}^1_{dR}(M) = 0$, then each infinitesimal symmetry is the Hamiltonian vector field of a conserved quantity.

Foundations on Geometry and Mechanics $_{\rm OOOOOOOOOO}$

General definitions

Presentation

Poisson Structures ●0000000000

Integrable Systems 00000000

Foundations on Geometry and Mechanics

- Symplectic Algebra
- Symplectic Manifolds
- Hamiltonian mechanics and Noether's Theorem

5 Poisson Structures

• General definitions

• Poisson varieties and Poisson manifolds

6 Integrable Systems

- Geometric precedent
- Algebraic integrability

Foundations on Geometry and Mechanics ${\tt ooooooooooo}$

Poisson Structures

Integrable Systems 00000000

Definition

General definitions

A Poisson algebra is an \mathbb{F} -vector space A equipped with two binary operations: $\cdot, \{,\} : A \times A \to A$, such that

- ♦ (A, \cdot) is a commutative associative algebra over \mathbb{F} , with 1.
- $\diamond \ (A, \{\,,\}) \text{ is a Lie algebra over } \mathbb{F}.$
- $\diamond~$ Both structures are compatible in the sense that

 $\{f \cdot g, h\} = f \cdot \{g, h\} + g \cdot \{f, h\}, \text{ for every } f, g, h \in A.$ (3)

In this case the Lie bracket $\{,\}$ is called a *Poisson bracket*.

Foundations on Geometry and Mechanics ${\tt ooooooooooo}$

Poisson Structures

Integrable Systems 00000000

ション ふゆ アメリア メリア ション

Definition

General definitions

Let $(A,\cdot,\{\,,\})$ be a Poisson algebra and let $B\subseteq A$ be a vector subspace. Then

◊ B is a Poisson subalgebra of A if it is a subalgebra and a Lie subalgebra of A. That is,

 $B \cdot B \subseteq B$ and $\{B, B\} \subseteq B$.

◊ B is a Poisson ideal of A if it is an ideal and a Lie ideal of A. That is,

 $B \cdot A \subseteq B$ and $\{B, A\} \subseteq B$.

Foundations on Geometry and Mechanics	Poisson Structures	Integrable Systems
	000000000	
General definitions		

Fix $H \in A$. The derivation $X_H := \{\cdot, H\}$ of A is called a Hamiltonian derivation. We define

 $Ham(A) := \{X_H \mid H \in A\}.$

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Foundations or	ı Geometry	Mechanics

General definitions

Poisson Structures

Fix $H \in A$. The derivation $X_H := \{\cdot, H\}$ of A is called a *Hamiltonian* derivation. We define

$$Ham(A) := \{X_H \mid H \in A\}.$$

An element $H \in A$ is a Casimir if $X_H(f) = \{f, H\} = 0$, for every $f \in A$. The set of this elements is denoted by

 $Cas(A) := \{ H \in A \mid \{ f, H \} = 0, \text{ for every } f \in A \}.$

Poisson Structures

Integrable Systems 00000000

Proposition

General definitions

Let $(A, \cdot, \{,\})$ be a Poisson algebra.

- (1) Cas(A) is a subalgebra of (A, \cdot) , which contains the image of \mathbb{F} in A, under the natural inclusion $a \mapsto a \cdot 1$.
- (2) If A has no zero divisors, then Cas(A) is integrally closed in A.
- (3) Ham(A) is not an A-module (in general). Instead,

 $X_{f \cdot g} = f X_g + g X_f$, for every $f, g \in A$.

- (4) Ham(A) is a Cas(A)-module.
- (5) The map $A \to \mathfrak{X}^1(A)$, defined by $H \mapsto -X_H$ is a morphism of Lie algebras. As a consequence, Ham(A) is a Lie subalgebra of of $\mathfrak{X}^1(A)$.
- (6) The Lie algebra sequence

$$0 \longrightarrow Cas(A) \longrightarrow A \xrightarrow{-X} Ham(A) \longrightarrow 0$$

is a short exact sequence.

Foundations on Geometry and Mechanics ${\scriptstyle \texttt{oooooooooo}}$

Poisson Structures

Integrable Systems 00000000

Poisson varieties and Poisson manifolds

Presentation

Foundations on Geometry and Mechanics

- Symplectic Algebra
- Symplectic Manifolds
- Hamiltonian mechanics and Noether's Theorem

5 Poisson Structures

- General definitions
- Poisson varieties and Poisson manifolds

6 Integrable Systems

- Geometric precedent
- Algebraic integrability

Foundations on Geometry and Mechanics	Poisson Structures	Integrable Systems 00000000
Poisson varieties and Poisson manifolds		

Definition

Let M be an affine variety and suppose that $\mathcal{F}(M)$ is equipped with a Lie bracket $\{,\}: \mathcal{F}(M) \times \mathcal{F}(M) \to \mathcal{F}(M)$, which makes $(\mathcal{F}(M), \cdot, \{,\})$ into a Poisson algebra.

ション ふゆ アメリア メリア ション

Foundations on Geometry and Mechanics	Poisson Structures	Integrable Systems
Poisson varieties and Poisson manifolds		

Definition

Let M be an affine variety and suppose that $\mathcal{F}(M)$ is equipped with a Lie bracket $\{,\}: \mathcal{F}(M) \times \mathcal{F}(M) \to \mathcal{F}(M)$, which makes $(\mathcal{F}(M), \cdot, \{,\})$ into a Poisson algebra.

Definition

For a Poisson variety $(M, \{,\})$ and $p \in M$, the rank of the Poisson matrix of $\{,\}$ at p, is called the rank of $\{,\}$ at p, denoted by $Rk_p\{,\}$. The rank of $\{,\}$, denoted by $Rk\{,\}$ is the maximum $\max_{p \in M} Rk_p\{,\}$.

Geometry	Mechanics

Poisson Structures

◆□▶ ◆□▶ ★□▶ ★□▶ ★□▶ ◆□

Poisson varieties and Poisson manifolds

Proposition

Let $(M, \{,\})$ be an affine Poisson variety.

- (i) For every $p \in M$, $Rk_p\{,\}$ is an even number.
- (*ii*) For each $s \in \mathbb{N}$, let us define

 $M_{(s)} := \{ p \in M \mid Rk_p\{,\} \ge 2s \} \subseteq M.$

Then $M_{(s)}$ is open. In particular, the set $\mathcal{U} := \{p \in M \mid Rk_p\{,\} = Rk\{,\}\}$ is open and dense in M. (ii) $Rk\{,\}$ is at most equal to the dimension of M.

Foundations on Geometry and Mechanics	Poisson Structures	Integrable Systems 00000000
Poisson varieties and Poisson manifolds		

Definition (Poisson manifold)

Let Π be a bivector field on a manifold M. Π is a Poisson structure on M if for every open subset $U \subseteq M$, the restriction of Π to U makes $\mathcal{F}(U)$ into a Poisson algebra..

▲□▶ ▲□▶ ▲□▶ ▲□▶ 三回□ のへぐ

Foundations on Geometry and Mechanics	Poisson Structures	Integrable Systems 00000000
Poisson varieties and Poisson manifolds		

Definition (Poisson manifold)

Let Π be a bivector field on a manifold M. Π is a Poisson structure on M if for every open subset $U \subseteq M$, the restriction of Π to U makes $\mathcal{F}(U)$ into a Poisson algebra..

In bracket notation, $\{f, g\} = \Pi(f, g)$, where $f, g \in \mathcal{F}(U)$. Π can also be written as

$$\Pi = \sum_{1 \le j < k \le d} \{x_j, x_k\} \frac{\partial}{\partial x_j} \wedge \frac{\partial}{\partial x_k}.$$

(日) (日) (日) (日) (日) (日) (日) (日) (日)
Foundations on Geometry and Mechanics	Poisson Structures	Integrable Systems 00000000
Poisson varieties and Poisson manifolds		

Definition (Poisson manifold)

Let Π be a bivector field on a manifold M. Π is a Poisson structure on M if for every open subset $U \subseteq M$, the restriction of Π to U makes $\mathcal{F}(U)$ into a Poisson algebra..

In bracket notation, $\{f, g\} = \Pi(f, g)$, where $f, g \in \mathcal{F}(U)$. Π can also be written as

$$\Pi = \sum_{1 \le j < k \le d} \{x_j, x_k\} \frac{\partial}{\partial x_j} \wedge \frac{\partial}{\partial x_k}.$$

Given a bivector field Π on M, a necessary and sufficient condition for Π to define a Poisson structure is that $[\Pi, \Pi]_S = 0 \in \mathfrak{X}^3(M)$, where $[,]_S$ denotes the Schouten-Nijenhuis bracket.

Geometry	Mechanics

Poisson Structures

Integrable Systems 00000000

ション ふゆ アメリア メリア ション

Poisson varieties and Poisson manifolds

Theorem (Weinstein's splitting theorem)

Let (M, Π) be a Poisson manifold. Let $x \in M$ be an arbitrary point and denote the rank of Π at x by r. There exists a coordinate neighborhood U of x with coordinates $q_1, \ldots, q_r, p_1, \ldots, p_r, z_1, \ldots, z_s$, centered at x, such that, on U,

$$\Pi = \sum_{j=1}^{r} \frac{\partial}{\partial q_j} \wedge \frac{\partial}{\partial p_j} + \sum_{1 \le k, l \le s} \varphi_{kl}(z) \frac{\partial}{\partial z_k} \wedge \frac{\partial}{\partial z_l},$$

where the functions φ_{kl} are (smooth or holomorphic) functions which depend on $z = (z_1, \ldots, z_s)$ only, and which vanish when z = 0.

Foundations on Geometry and Mechanics	Poisson Structures ○○○○○○○○○	Integrable Systems 00000000
Poisson varieties and Poisson manifolds		

Example

A prime example of a Poisson manifold is that of a symplectic manifold (M, ω) , that is, ω is a non-degenerate closed 2-form.

 $\{f,g\} := \omega(X_f, X_g).$

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Foundations on Geometry and Mechanics	Poisson Structures ○○○○○○○○○	Integrable System 00000000
Poisson varieties and Poisson manifolds		

Example

A prime example of a Poisson manifold is that of a symplectic manifold (M, ω) , that is, ω is a non-degenerate closed 2-form.

 $\{f,g\}:=\omega(X_f,X_g).$

Example

Consider the Lie algebra $\mathfrak g$ of a Lie group G. The Poisson bracket on $\mathfrak g^*$ is given by

$$\{f,h\}(\varphi) = \langle \varphi, [df|_{\varphi}, dh|_{\varphi}] \rangle,$$

for $f, h \in \mathcal{C}^{\infty}(\mathfrak{g}^*)$ and $\varphi \in \mathfrak{g}^*$.

Foundations on Geometry and Mechanics ${\tt oooooooooo}$

Geometric precedent

Presentation

Poisson Structures 00000000000 Integrable Systems

Foundations on Geometry and Mechanics

- Symplectic Algebra
- Symplectic Manifolds
- Hamiltonian mechanics and Noether's Theorem

Poisson Structures

- General definitions
- Poisson varieties and Poisson manifolds

6 Integrable Systems

- Geometric precedent
- Algebraic integrability

Geometry	Mechanics

Geometric precedent

Poisson Structures 00000000000

A k-dimensional distribution E on M is a datum of a k-dimensional subspace E_p of T_pM , for every $p \in M$.

Foundations o	n Geometry	and	Mechanics	

Geometric precedent

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

A k-dimensional distribution E on M is a datum of a k-dimensional subspace E_p of T_pM , for every $p \in M$.

The *Frobenius theorem* states that if E is a (smooth or holomorphic) k-dimensional distribution, then the following conditions are equivalent:

- $\diamond E$ is involutive.
- $\diamond E$ is completely integrable.
- $\diamond E$ arises from a k-dimensional foliation on M.

Foundations on Geometry and Mechanics ${\tt oooooooooo}$

Algebraic integrability

Presentation

Poisson Structures 00000000000 Integrable Systems

Foundations on Geometry and Mechanics

- Symplectic Algebra
- Symplectic Manifolds
- Hamiltonian mechanics and Noether's Theorem

Poisson Structures

- General definitions
- Poisson varieties and Poisson manifolds

6 Integrable Systems

- Geometric precedent
- Algebraic integrability

Foundations on Geometry and Mechanics ${\tt oooooooooo}$

Poisson Structures

Integrable Systems

Algebraic integrability

Definition

Let $(M, \{,\})$ be an affine Poisson variety and let \mathcal{A} be a subalgebra of $\mathcal{F}(M)$.

- $\diamond \ \mathcal{A} \text{ is called involutive if } \{\mathcal{A}, \mathcal{A}\} = 0.$
- ♦ We say that \mathcal{A} is *complete* if for any $f \in \mathcal{F}(M)$ one has $\{f, \mathcal{A}\} = 0$ if and only if $f \in \mathcal{A}$.

The triplet $(M, \{,\}, \mathcal{A})$, where \mathcal{A} has the above two properties is called a *complete involutive Hamiltonian system*.

Geometry	Mechanics

Poisson Structures 00000000000 ・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Proposition

Algebraic integrability

Let $(M, \{,\}, A)$ be a complete involutive Hamiltonian system. Then

$$\dim(\mathcal{A}) \le \dim(M) - \frac{1}{2} Rk\{,\}.$$

Geometry	Mechanics

Poisson Structures 00000000000 Integrable Systems

Proposition

Algebraic integrability

Let $(M, \{,\}, A)$ be a complete involutive Hamiltonian system. Then

$$\dim(\mathcal{A}) \le \dim(M) - \frac{1}{2} Rk\{,\}.$$

Definition

If $(M, \{,\})$ is an affine Poisson variety whose algebra of Casimirs is maximal and \mathcal{A} is a complete involutive subalgebra of $\mathcal{F}(M)$ then \mathcal{A} is called *integrable* if

$$dim(\mathcal{A}) = dim(M) - \frac{1}{2} Rk\{,\}.$$

Foundations on Geometry and Mechanics	Poisson Structures	Integrable Systems
		00000000
Algebraic integrability		

Given s functions $f_1, \ldots, f_s \in \mathcal{F}(M)$, we denote by $F = (f_1, \ldots, f_s)$ the s-tuple of this data.

Proposition

Let $(M, \{,\})$ be a Poisson manifold and let us suppose that $F = (f_1, \ldots, f_s)$ is involutive. Then,

- (a) The Hamiltonian vector fields X_{f_1}, \ldots, X_{f_s} commute.
- (b) The subalgebra of $\mathcal{F}(M)$, generated by the functions f_1, \ldots, f_s is also involutive.

Foundations on Geometry and Mechanics $_{\rm OOOOOOOOOO}$

Poisson Structures

Integrable Systems ○○○○○○●○

Definition

Algebraic integrability

Let $(M, \{,\})$ be a Poisson manifold of rank 2r and set a *s*-tuple $F = (f_1, \ldots, f_s)$ of elements in $\mathcal{F}(M)$. We say that F is *completely integrable*, in the sense of Liouville, if it is involutive, independent and $s = \dim(M) - r$. In this case, $(M, \{,\}, F)$ is said to be a *completely integrable system*. Foundations on Geometry and Mechanics $_{\rm OOOOOOOOOO}$

Poisson Structures

Integrable Systems

Algebraic integrability

Definition

Let $(M, \{,\})$ be a Poisson manifold of rank 2r and set a *s*-tuple $F = (f_1, \ldots, f_s)$ of elements in $\mathcal{F}(M)$. We say that F is *completely integrable*, in the sense of Liouville, if it is involutive, independent and $s = \dim(M) - r$. In this case, $(M, \{,\}, F)$ is said to be a *completely integrable system*.

Important result: Liouville Theorem.

Foundations on Geometry and Mechanics 0000000000

Algebraic integrability

Poisson Structures

Integrable Systems 00000000

Merci beaucoup à tous!

Appendix ••••••• Bibliography

Bibliography I

- Adler, M., van Moerbeke, P., Vanhaecke, P., Algebraic Integrability, Painleve Geometry and Lie Algebras, volume 47 of Ergebnisse der Mathematik und ihrer Grenzgebiete. Springer-Verlag (2004).
- Arnold, M., *Mathematical methods of classical mechanics*. Springer-Verlag, New York (1978). Translated from the Russian by K. Vogtmann and A. Weinstein, Graduate Texts in Mathematics, 60.
- Bhaskara, K., Viswanath, K., Poisson algebras and Poisson manifolds. volume 174 of Pitman Research Notes in Mathematics Series. Longman Scientific and Technical, Harlow, (1988).
- Bona, J. L., Smith, R., The initial value problem for the Korteweg-de Vries equation, Roy. Soc. London. Ser A 278 (1975), 555-601.

Appendix •••••• Bibliography

Bibliography II

- Bona, J. L., Scott, R., Solutions of the Korteweg-de Vries equation in fractional order Sobolev spaces, Duke Math Journal. 43 (1976), 87-99.
- Bourgain, J., Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations. Part II: The KdV equation, Geom. Funct. Anal. 3 (1993), 209-262.
- Cannas da Silva, A., Weinstein, A., *Lectures on symplectic geometry*. volume 1764 of *Lecture Notes in Mathematics*. Springer-Verlag, Berlin, (2001).
- Christ, M., Colliander, J., Tao, T., Asymptotics, frequency modulation, and low regularity ill-posedness for canonical defocusing equations, Amer. J. Math. **125** (2003), 1235-1293.

Appendix ••••••• Bibliography

Bibliography III

- Colliander, J., Keel, G., Staffilani, H., Takaoka, H., Tao, T., Global well-posedness for KdV in Sobolev spaces of negative index, Electron. J. Differential Equations. **2001**, No. 26, 1-7.
- Dufour, J.P., Zung, N.T., *Poisson structures and their normal forms*. volume 242 of *Progress in Mathematics*. Birkhäuser Verlag, Basel, (2005).
- Escauriaza, L., Kenig, C., Ponce, G., Vega, L., On uniqueness properties of solutions of the k-Generalized KdV equations, J. Funct. Anal. 244 (2007), 504-535.
- Fomenko, A., Integrability and nonintegrability in geometry and mechanics. volume 31 of Mathematics and its Applications (Soviet Series). Kluwer Academic Publishers Group, Dordrecht, (1988). Translated from the Russian by M. V. Tsaplina.

Appendix ••••••• Bibliography

Bibliography IV

- Guillemin, V., Sternberg, S., *Symplectic techniques in physics*. Cambridge University Press, Cambridge, second edition, (1990).
- Guo, Z., Global well-posedness of Korteweg-de Vries equation in $H^{-3/4}(\mathbb{R})$, J. Math. Pures Appl. **91** (2009), 583-597.
- Isaza, P., Linares, F., Ponce, G., On decay properties of solutions of the k-generalized Korteweg-de Vries equation, Communications in Mathematical Physics. **234** (2013), 129-146.
 - Kato, T., On the Cauchy problem for the (generalized) Korteweg-de Vries equation, Advances in Mathematics Supplementary Studies, Studies in Applied Math. 8 (1983), 527-620.

Korteweg, D.J., de Vries, G., On the change of form of long waves advancing in a rectangular canal, and on a new type of long stationary waves, Philos. Mag. **39** (1895), 422-443.

Appendix •••••• Bibliography

Bibliography V

- Kishimoto, N., Low-regularity bilinear stimates for a quadratic nonlinear Schrödinger equation, J. Differential Equations. 247 (2009), 1397-1439.
- Kenig, C., Ponce, G., Vega, L., Well-posedness of the initial value problem for the Korteweg-de Vries equation, J. Amer. Math. Soc. 4 (1991), 323-347.
- Kenig, C., Ponce, G., Vega, L., A bilinear estimate with applications to the Korteweg-de Vries equation, J. Amer. Math. Soc. 9 (1996), 573-603.
- Kenig, C., Ponce, G., Vega, L., On the ill-posedness of some canonical dispersive equations, Duke Math Journal. 106 (2001), 617-633.

Hörmander, L., The Analysis of Partial Differential Operators I, Springer-Verlag, New York, 1983.

Appendix ••••••• Bibliography

Bibliography VI

- Laurent-Gengoux, C., Pichereau, A., Vanhaecke, P., *Poisson Structures*. volume 347 of *Grundlehren der Mathematischen Wissenschaften*. Springer-Verlag, Berlin Heidelberg, (2013).
- Lee, J., Introduction to Smooth Manifolds. volume 218 of Graduate Texts in Mathematics, second edition. Springer-Verlag, New York (2012).
- Libermann, P., Marle, C.H., Symplectic geometry and analytical mechanics. volume 35 of Mathematics and its Applications. D. Reidel Publishing Co., Dordrecht, (1987). Translated from the French by B. E. Schwarzbach.
- Saut, J.C., Temam, R., *Remarks on the Korteweg-de Vries equation*, Israel J. Math **24** (1976), 78-87.

Appendix •••••• Bibliography

Bibliography VII

Vanhaecke, P., Integrable Systems in the Realm of Algebraic Geometry. volume 1638 of Lecture Notes in Mathematics. Springer-Verlag, Berlin Heidelberg GmbH, (2001).

ション ふゆ アメリア メリア ション