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Precedents

Our starting point will be the initial value problem (IVP) associated
to the Korteweg-de Vries (KdV) equation{

∂tu+ ∂3xu+ u∂xu = 0, u = u(x, t), x, t ∈ R,
u(0) = u0.

(1)

The KdV equation describes the propagation of one-dimensional long-
waves of small amplitude in a shallow medium.

We intend to study a decay property of exponential type of its solutions
u(x, t) in the positive semiaxis x.
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Precedents

Results on the local and global well-posedness for the IVP (1) in the
context of Sobolev spaces Hs(R) have been obtained and successively
improved in a series of papers of which we cite among others

Saut and Temam [ST], Bona and Smith [BS], Bona and Scott [BSc],
Kato [K], Kenig, Ponce and Vega [KPV1], [KPV2], Bourgain [B],
Colliander, Keel, Staffilani, Takaoka and Tao [CKSTT], Christ, Col-
liander and Tao [CCT], Guo [G], and Kishimoto [Ki].
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In [EKPV], Escauriaza, Kenig, Ponce and Vega showed that there
exists a constant a0 > 0 such that if a > a0 and if a solution u of the
IVP (1) satisfies

ea x
3/2
+ u(0) ∈ L2(R) and ea x

3/2
+ u(1) ∈ L2(R),

then u ≡ 0.

The exponent of order x3/2 is related to the decay of the fundamental
solution of the IVP (1).
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Problem Statements

The question arises about if, for an initial datum u0 with ea0x
3/2
+ u0 ∈

L2(R), the solution of the IVP (1) keeps some decay with exponent of
order x3/2+ as time evolves.

An affirmative answer to this question was given in [ILP], where it was
proved, that if ea0x

3/2
+ u0 ∈ L2(R), then the solution u(t) on [0, T ] is

such that ∥∥∥ea(t) x3/2
+ u(t)

∥∥∥
L2(R)

≤ C, (2)

where C = C
(
a0, T, ‖u0‖L2(R), ‖exu0‖L2(R)

)
, and

a(t) =
a0√

1 + 27 a20t
, t ∈ [0, T ].

Our purpose is to obtain an optimal function a(t), with a(0) = a0 for
which (2) holds if ea0 x

3/2
+ u0 ∈ L2(R).
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Problem Statements

We analize the behavior of the fundamental solution of the linear prob-
lem associated to IVP (1),{

∂tu+ ∂3xu = 0, x, t ∈ R,
u(0) = δ,

which is
St(x) =

1
3
√
3t
A

(
x

3
√
3t

)
,

where A is the Airy function.
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Problem Statements

It is known that, for x > 0,

St(x) ∼ x−1/4 t−1/4 e−
2

3
√

3
x3/2
√

t .

The previous exponent is a0x3/2 at the instant t0 = 27
4a20

. If we take
t0 as the initial time and measure time t from that instant on, the
fundamental solution at t will be

u(t)(x) = St0+t(x) ∼ x−1/4 (t0 + t)−1/4 e
− a0√

1+ 27
4

a2
0t
x3/2

, x > 0, t > −t0.
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Problem Statements

In this thesis we will prove that the function

a(t) =
a0√

1 + 27
4 a

2
0t

produces the optimal decay of exponential order 3/2 to the right of the
x-axis, as t evolves, when the initial datum satisfies ea0 x

3/2
+ u0 ∈ L2(R).
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Problem Statements

More precisely:

Theorem I

For u0 ∈ L2(R) and T > 0, let u ∈ C
(
[0, T ];L2(R)

)
be the solution of

the IVP (1) with u(0) = u0. Let us suppose that for a0 > 0,

ea0 x
3/2
+ u0 ∈ L2(R).

Then∥∥∥ea(t) x3/2
+ u(t)

∥∥∥
L2(R)

≤ C
∥∥∥ea0 x3/2

+ u0

∥∥∥
L2(R)

, for every t ∈ [0, T ],

where
a(t) =

a0√
1 + 27

4 a
2
0t
, t ∈ [0, T ],

and C = C
(
a0, T, ‖u0‖L2(R), ‖exu0‖L2(R)

)
.
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Our second result establishes that the function a(t) obtained in Theo-
rem I is optimal.

Theorem II

For T > 0, a0 > 0 and 0 < ε < 1
3 a0, there exist u0 ∈ S(R) with

ea0 x
3/2
+ u0 ∈ L2(R) and C > 0 such that the solution u on [0, T ] of the

IVP (1) with initial datum u0 satisfies

C e−g(t)(a0+ε) x
3/2

≤ u(t)(x), for every t ∈ [0, T ] and every x > 0.

In particular, eg(t)(a0+ε) x
3/2
+ u(t) /∈ L2(R), for every t ∈ [0, T ].
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We regularize the initial datum of the IVP (1)

We consider a function ρ ∈ C∞0 (R) with ρ ≥ 0, supp(ρ) ⊂ [−1, 1] and
such that ∫

R
ρ dx = 1.

For ε ∈ (0, 1), we define

ρε :=
1

ε
ρ
( ·
ε

)
and

uε0(x) := ρε ∗ u0(·+ ε)(x) =

∫
R
ρε(y)u0(x+ ε− y) dy.

x−1−ε ε 1

ρε =
1

ε
ρ
( ·
ε

)
,∫

R
ρε dx = 1.
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Proof of Theorem I

At first we only consider that a is a differentiable function on [0, T ],
with a(0) = a0.

We are going to make an a priori estimate of u ≡ um. For this, let
us take a truncation function ω ∈ C∞(R), like it is shown in the next
figure:

x

y

1
4

1
2

1

y = ω(x)
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Proof of Theorem I

For each positive integer n, we consider a function ψn defined in the
following fashion:

ψ(x, t) ≡ ψn(x, t) :=
{
ω(x) a(t)x3/2, if x ≤ n,
log (Pn(x, t)) , if x > n,

where, for fixed t ∈ [0, T ], Pn(x, t) is the second degree polynomial in
x which coincides with eω(x) a(t) x

3/2

= ea(t) x
3/2

at x = n together with
its two first derivatives.

For a fixed positive integer m and for n ∈ N, let us define

f ≡ fm,n = um e
ψn = u eψ.
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Proof of Theorem I

Then, u = e−ψ f . We replace u in the KdV equation and multiply by
eψ. Next we multiply by f and integrate by parts with respect to the
variable x, on R, to obtain:

1

2

d

dt

∫
f2+ 3

∫
ψx(∂xf)

2−
∫
(ψt+ψ

3
x+ψxxx)f

2− 2

3

∫
e−ψψxf

3 = 0.

Hence,

1

2

d

dt

∫
f2 ≤

∫
(ψt + ψ3

x + ψxxx)f
2 +

2

3

∫
e−ψψxf

3. ♣

Our objective is to apply Gronwall’s lemma to estimate
∫
f2.
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Proof of Theorem I

We start by studying the terms on the right hand side of ♣ for 1 ≤ x ≤
n, where we know that ψ = a x3/2. Then, the first integrand is

(
a′x3/2 +

27

8
a3x3/2 − 3

8
a x−3/2

)
f2.

This leads us to state the initial value problem{
a′(t) +

27

8
a(t)3 = 0,

a(0) = a0,

whose solution is given by

a(t) =
a0√

1 + 27
4 a

2
0t
.
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Proof of Theorem I

In the interval [1, n] we find that the integrals on the right hand side
of ♣ are bounded by

a0 ‖x1/2+ u(t)‖L∞([0,∞))

∫
R
f2.
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Proof of Theorem I

Next, we consider the contribution of the interval (n,∞) to the integrals
of the right hand side of expression ♣.

From the definition of the polynomial P ≡ Pn, we have that

P (x, t) =

[
1 +

3

2
an1/2(x− n) +

(
3

8
an−1/2 +

9

8
a2n

)
(x− n)2

]
ean

3/2
,

Pt(x, t) = a′
[
n3/2 +

(
3

2
n1/2 +

3

2
an2

)
(x− n)

+

(
3

8
n−1/2 +

21

8
an+

9

8
a2n5/2

)
(x− n)2

]
ean

3/2
,

Px(x, t) =

[
3

2
an1/2 +

(
3

4
an−1/2 +

9

4
a2n

)
(x− n)

]
ean

3/2
,

Pxx(x, t) =

(
3

4
an−1/2 +

9

4
a2n

)
ean

3/2
.
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Proof of Theorem I

Seeing the previous polynomials as perturbations of certain polynomials
in the variable r := an1/2(x− n), and using a continuity argument we
find that for x ∈ (n,∞) and n > N (where N is certain large positive
integer),

ψt + ψ3
x + ψxxx =

1

P 3

[
P 2Pt + 3P 3

x − 3P PxPxx
]
< 0.

Furthermore,∣∣∣∣23
∫ ∞
n

e−ψψx f
3

∣∣∣∣ ≤ (1 + a0)
∥∥∥x1/2+ u(t)

∥∥∥
L∞([0,∞))

∫
R
f2.

Hence, the integrals on the right hand side of ♣ performed on the
interval (n,∞) are bounded by

(1 + a0)
∥∥∥x1/2+ u(t)

∥∥∥
L∞([0,∞))

∫
R
f2.
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Proof of Theorem I

Putting together all the results obtained on the right hand side of ♣
we conclude that

1

2

d

dt

∫
f2 ≤ C (1 + a30)

(
1 + ‖(1 + x

1/2
+ )u(t)‖L∞([0,∞))

)∫
f2.

Since 1+x1/2+ ≤ 2ex+ , using a Sobolev embedding theorem and return-
ing to the notation u = um, we have that

1

2

d

dt

∫
e2ψnum(t)2 dx ≤ βm(t)

∫
e2ψnum(t)2 dx,

where βm(t) = C (1 + a30)
(
1 + ‖exum(t)‖L2(R) + ‖ex∂xum(t)‖L2(R)

)
,

and C is a universal constant.
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Proof of Theorem I

It can be seen that∫ T

0

βm(s) ds ≤ C (1 + a30)(1 + T ) eKT ‖exu0‖L2(R) ,

where K is some constant which only depends on ‖u0‖L2(R).

Applying Gronwall’s lemma, we conclude that∫
e2ψn(x,t)um(t)2 dx ≤ exp

(∫ T

0

βm(s) ds

)∫
e2ψn(x,0)um(0)2 dx

≤ C
∫
e2ψn(x,0)um(0)2 dx,

where C = C
(
a0, T, ‖u0‖L2(R) , ‖exu0‖L2(R)

)
.
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Proof of Theorem I

We apply Fatou’s lemma, letting n→∞, to get that∫
R

(
ea(t) x

3/2
+ um(t)

)2
dx ≤ C

∫
R

(
ea0 x

3/2
+ u0

)2
dx,

for every t ∈ [0, T ], and for all m ∈ N.

There is a subsequence umj
(t) such that umj

(t)(x) → u(t)(x), for al-
most every x ∈ R, when j → ∞. Thus, applying Fatou’s lemma once
again, for this subsequence, we obtain that∫

R

(
ea(t) x

3/2
+ u(t)

)2
dx ≤ C

∫
R

(
ea0 x

3/2
+ u0

)2
dx, for all t ∈ [0, T ].
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Proof of Theorem I

For the linear problem associated to the IVP (1), we can obtain a result
similar to that in Theorem I.

If u is a solution of the linear problem associated to (1) and ea0 x
3/2
+ u(0) ∈

L2(R), then ∥∥∥ea(t) x3/2
+ u(t)

∥∥∥
L2(R)

≤ C
∥∥∥ea0 x3/2

+ u(0)
∥∥∥
L2(R)

,

where C = C(a0, T ).
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Some previous results

In the proof of Theorem II we will construct a function of the Schwartz
class which satisfies the conclusions of the theorem. For this function
it will be important to study the exponential decay of order 3/2 of its
first and second derivatives.

Proposition

For T > 0 and u0 ∈ S(R) let u be the solution on [0, T ] of the IVP
(1) with initial datum u0. If a0 ≥ 0 and ea0 x

3/2
+ ∂jxu0 ∈ L2(R), then

there exist constants C and M , such that∥∥∥ea(t) x3/2
+ ∂jxu(t)

∥∥∥
L2(R)

≤ eMT
∥∥∥ea0 x3/2

+ ∂jxu0

∥∥∥
L2(R)

, for every t ∈ [0, T ],

where j = 1, 2, and
M = C(1+a30) sup

t∈[0,T ]

[
1 + ‖(1 + x

1/2
+ )u(t)‖L∞([0,∞)) + ‖∂xu(t)‖L∞(R)

]
,

and C is an absolute constant.
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Proof of Theorem II

Let us take a function ϕ ∈ C∞c (R) such that ϕ ≥ 0, supp(ϕ) ⊂ (−1, 1)
and

∫
R ϕ = 1, and, for δ ∈ (0, 1/2) let ϕδ = 1

δϕ
( ·
δ

)
.

For α > 0 small, which will be properly chosen later, we consider
problem (1) with initial datum

u0,α ≡ u0 = S(t0)(αϕδ),

where
t0 =

4

27(a0 + ε/3)2
.



Introduction Theorem I: Decay of solutions Theorem II: Optimal decay

Proof of Theorem II

Let us take a function ϕ ∈ C∞c (R) such that ϕ ≥ 0, supp(ϕ) ⊂ (−1, 1)
and

∫
R ϕ = 1, and, for δ ∈ (0, 1/2) let ϕδ = 1

δϕ
( ·
δ

)
.

For α > 0 small, which will be properly chosen later, we consider
problem (1) with initial datum

u0,α ≡ u0 = S(t0)(αϕδ),

where
t0 =

4

27(a0 + ε/3)2
.



Introduction Theorem I: Decay of solutions Theorem II: Optimal decay

Proof of Theorem II

From the theory of global well-posedness on spaces Hs(R), for T > 0,
the IVP (1) has a unique solution uα ≡ u ∈ C ([0, T ];S(R)), which,
given its regularity, satisfies the Duhamel’s formula pointwise; that is,

u(t) = S(t)u0 −
∫ t

0

S(t− τ) (u(τ)∂xu(τ)) dτ

≡ S(t)u0 − F (t), for every t ∈ [0, T ],
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Proof of Theorem II

Using the properties of the convolution, the asymptotic behavior of the
Airy function, and the previous Remarks, we prove that for δ > 0 small
enough, x > 1 and t ∈ [0, T ],

C αe−g(t)(a
+
0 )x

3/2

≤ [S(t)u0] (x) ≤ C αe−g(t)(a0+ε/4)x
3/2

,

where C and C are independent of α and of t ∈ [0, T ].
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Proof of Theorem II

Our next step is to show that the integral term F (t) in the Duhamel’s
formula decays as α2e−β x

3/2

, for some β > g(t)
(
a+0
)
, for every t ∈

[0, T ].

Let us fix a1 and a2 such that a−0 < a2 < a1 < a0.
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Proof of Theorem II

Let us recall that the integral term F (t) in the Duhamel’s formula is
given by

F (t) =

∫ t

0

S(t− τ) (u(τ)∂xu(τ)) dτ, t ∈ [0, T ].

In order to estimate F (t), we first analyze ∂xF (t):

∂xF (t) =

∫ t

0

S(t− τ)f(τ) dτ,

where f(τ) ≡ ∂x (u(τ)∂xu(τ)) = (∂xu(τ))
2
+ u(τ)∂2xu(τ).
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Proof of Theorem II

In virtue of the Fundamental Theorem of Calculus, Fubini’s Theorem,
Cauchy-Schwarz inequality, and some estimates, we obtain that for
x ≥ 0

|F (t)(x)| ≤ C α2 T e−g(t)(2a
−
0 ) x3/2

.

Let us notice that if ε < 1
3 a0, then 2a−0 > a+0 . Therefore, from the last

estimate,
F (t)(x) ≤ C α2e−g(t)(a

+
0 ) x

3/2
+ ,

with C independent of x > 1, t ∈ [0, T ], and of α.
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Proof of Theorem II

it follows that for x > 0,

u(t)(x) ≥ C αe−g(t)(a
+
0 ) x3/2

− C α2e−g(t)(a
+
0 ) x3/2

,

where C and C do not depend upon x > 0, t ∈ [0, T ], and α > 0.

Thus, by taking α = C/2C, we obtain that, for x > 0

u(t)(x) ≥ C
2

4C
e−g(t)(a

+
0 )x3/2

.
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Foundations on Geometry and Mechanics Poisson Structures Integrable Systems

Symplectic Algebra

Let V be a vector space. A 2-covector ω on V is said to be non-
degenerate if for every nonzero vector v ∈ V, there exists w ∈ V such
that ω(v, w) 6= 0.

Example

Let V be a real vector space of dimension 2n, and let us fix a basis
{A1, B1, . . . , An, Bn} for V. Let {α1, β1, . . . , αn, βn} be the
corresponding dual basis, for V∗, and ω ∈

∧2
(V∗) be the 2-covector

defined by

ω =

n∑
j=1

αj ∧ βj .

(V, ω) is a symplectic vector space.
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Symplectic Algebra

Proposition (Canonical form for a symplectic tensor)

Let ω be a symplectic tensor on a vector space V over R, of dimension
m. Then V has even dimension m = 2n, and there exists a basis
{A1, B1, . . . , An, Bn} for V such that

ω =

n∑
j=1

αj ∧ βj ,

where {α1, β1, . . . , αn, βn} is the corresponding dual basis.

Proposition

Let V be a vector space of dimension 2n, and ω ∈
∧2

(V∗). Then ω is
a symplectic tensor if and only if ωn = ω ∧ · · · ∧ ω 6= 0.
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Symplectic Manifolds

A symplectic manifold is a smooth manifold M with a non-degenerate
closed 2-form.

Example (Local model)

Let M = R2n with the standard coordinates x1, . . . , xn, y1, . . . , yn.
The form

ω =

n∑
j=1

dxj ∧ dyj

is symplectic.
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Symplectic Manifolds

Let Q be any n-dimensional manifold, and M = T ∗Q its cotangent
bundle. Let us say that (T ∗U, q1, . . . , qn, p1, . . . , pn) is a coordinate
chart for M .

We define a 2-form on T ∗U by

ω =

n∑
j=1

dqj ∧ dpj .

In fact, if we consider the 1-form on T ∗U given by

τ =

n∑
j=1

pj dqj ,

then ω = −dτ .
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Symplectic Manifolds

Theorem (Darboux’s theorem)

Let (M,ω) be a symplectic manifold of dimension 2n. Then, each
point p ∈M has a coordinate neighborhood U , with local coordinates
x1, . . . , xn, y1, . . . , yn, such that

ω|U =

n∑
j=1

dxj ∧ dyj .
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Hamiltonian mechanics and Noether’s Theorem

Let X be a vector field on M . From Cartan’s formula,

LXω = d(ιXω) + ιX( dω︸︷︷︸
0

) = d ιXω.

X is a symplectic vector field if ιXω is a closed 1-form.

X is a Hamiltonian vector field if ιXω is an exact 1-form.

Given a smooth function f ∈ C∞(M ;R), the Hamiltonian vector field
associated to f is the unique vector field Xf on M which satisfies

ω(Xf , ·) = df.
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We have an operation, called the Poisson bracket on C∞(M),

{ , } : C∞(M)× C∞(M)→ C∞(M),

which is given by
{f, g} := ω(Xf , Xg),

for every f, g ∈ C∞(M).

In Darboux’s coordinates:

XH =

n∑
j=1

(
∂H

∂yj

∂

∂xj
− ∂H

∂xj

∂

∂yj

)
.

{f, g} =
n∑
j=1

(
∂f

∂xj

∂g

∂yj
− ∂f

∂yj

∂g

∂xj

)
.
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Hamiltonian mechanics and Noether’s Theorem

In a Hamiltonian system (M,ω,H) we have the notions of

A conserved quantity.

An infinitesimal symmetry.

Theorem (Noether’s theorem)

Let (M,ω,H) be a Hamiltonian system. If f is any conserved
quantity, then its Hamiltonian vector field Xf is an infinitesimal
symmetry. Conversely, if H1

dR(M) = 0, then each infinitesimal
symmetry is the Hamiltonian vector field of a conserved quantity.
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General definitions

Definition

A Poisson algebra is an F-vector space A equipped with two binary
operations: · , { , } : A×A→ A, such that

� (A, ·) is a commutative associative algebra over F, with 1.

� (A, { , }) is a Lie algebra over F.

� Both structures are compatible in the sense that

{f · g, h} = f · {g, h}+ g · {f, h}, for every f, g, h ∈ A. (3)

In this case the Lie bracket { , } is called a Poisson bracket.
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General definitions

Definition

Let (A, ·, { , }) be a Poisson algebra and let B ⊆ A be a vector
subspace. Then

� B is a Poisson subalgebra of A if it is a subalgebra and a Lie
subalgebra of A. That is,

B ·B ⊆ B and {B,B} ⊆ B.

� B is a Poisson ideal of A if it is an ideal and a Lie ideal of A.
That is,

B ·A ⊆ B and {B,A} ⊆ B.
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General definitions

Fix H ∈ A. The derivation XH := {·, H} of A is called a Hamiltonian
derivation. We define

Ham(A) := {XH | H ∈ A}.

An element H ∈ A is a Casimir if XH(f) = {f,H} = 0, for every
f ∈ A. The set of this elements is denoted by

Cas(A) := {H ∈ A | {f,H} = 0, for every f ∈ A}.
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General definitions

Proposition

Let (A, ·, { , }) be a Poisson algebra.

(1) Cas(A) is a subalgebra of (A, ·), which contains the image of F in A, under
the natural inclusion a 7→ a · 1.

(2) If A has no zero divisors, then Cas(A) is integrally closed in A.

(3) Ham(A) is not an A-module (in general). Instead,

Xf ·g = f Xg + g Xf , for every f, g ∈ A.

(4) Ham(A) is a Cas(A)-module.

(5) The map A→ X1(A), defined by H 7→ −XH is a morphism of Lie algebras.
As a consequence, Ham(A) is a Lie subalgebra of of X1(A).

(6) The Lie algebra sequence

0 −→ Cas(A) −→ A
−X−−−→ Ham(A) −→ 0

is a short exact sequence.
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Poisson varieties and Poisson manifolds

Definition
Let M be an affine variety and suppose that F(M) is equipped with a
Lie bracket { , } : F(M)×F(M)→ F(M), which makes
(F(M), ·, { , }) into a Poisson algebra.

Definition

For a Poisson variety (M, { , }) and p ∈M , the rank of the Poisson
matrix of { , } at p, is called the rank of { , } at p, denoted by Rkp{ , }.
The rank of { , }, denoted by Rk{ , } is the maximum maxp∈M Rkp{ , }.
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Poisson varieties and Poisson manifolds

Proposition

Let (M, { , }) be an affine Poisson variety.

(i) For every p ∈M , Rkp{ , } is an even number.

(ii) For each s ∈ N, let us define

M(s) := {p ∈M | Rkp{ , } ≥ 2s} ⊆M.

Then M(s) is open. In particular, the set
U := {p ∈M | Rkp{ , } = Rk{ , }} is open and dense in M .

(ii) Rk{ , } is at most equal to the dimension of M .
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Poisson varieties and Poisson manifolds

Definition (Poisson manifold)

Let Π be a bivector field on a manifold M . Π is a Poisson structure on M if for
every open subset U ⊆M , the restriction of Π to U makes F(U) into a Poisson
algebra..

In bracket notation, {f, g} = Π(f, g), where f, g ∈ F(U). Π can also be written as

Π =
∑

1≤j<k≤d
{xj , xk}

∂

∂xj
∧

∂

∂xk
.

Given a bivector field Π on M , a necessary and sufficient condition for Π to define
a Poisson structure is that [Π,Π]S = 0 ∈ X3(M), where [ , ]S denotes the Schouten-
Nijenhuis bracket.
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Poisson varieties and Poisson manifolds

Theorem (Weinstein’s splitting theorem)

Let (M,Π) be a Poisson manifold. Let x ∈M be an arbitrary point and denote
the rank of Π at x by r. There exists a coordinate neighborhood U of x with
coordinates q1, . . . , qr, p1, . . . , pr, z1, . . . , zs, centered at x, such that, on U ,

Π =
r∑
j=1

∂

∂qj
∧

∂

∂pj
+

∑
1≤k,l≤s

ϕkl(z)
∂

∂zk
∧

∂

∂zl
,

where the functions ϕkl are (smooth or holomorphic) functions which depend on
z = (z1, . . . , zs) only, and which vanish when z = 0.
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Poisson varieties and Poisson manifolds

Example

A prime example of a Poisson manifold is that of a symplectic
manifold (M,ω), that is, ω is a non-degenerate closed 2-form.

{f, g} := ω(Xf , Xg).

Example

Consider the Lie algebra g of a Lie group G. The Poisson bracket on
g∗ is given by

{f, h}(ϕ) = 〈ϕ, [df |ϕ, dh|ϕ]〉,

for f, h ∈ C∞(g∗) and ϕ ∈ g∗.
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A k-dimensional distribution E on M is a datum of a k-dimensional
subspace Ep of TpM , for every p ∈M .

The Frobenius theorem states that if E is a (smooth or holomorphic) k-
dimensional distribution, then the following conditions are equivalent:

� E is involutive.

� E is completely integrable.

� E arises from a k-dimensional foliation on M .
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Algebraic integrability

Definition

Let (M, { , }) be an affine Poisson variety and let A be a subalgebra of
F(M).

� A is called involutive if {A,A} = 0.

� We say that A is complete if for any f ∈ F(M) one has
{f,A} = 0 if and only if f ∈ A.

The triplet (M, { , },A), where A has the above two properties is
called a complete involutive Hamiltonian system.
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Algebraic integrability

Proposition

Let (M, { , },A) be a complete involutive Hamiltonian system. Then

dim(A) ≤ dim(M)− 1

2
Rk { , }.

Definition

If (M, { , }) is an affine Poisson variety whose algebra of Casimirs is
maximal and A is a complete involutive subalgebra of F(M) then A
is called integrable if

dim(A) = dim(M)− 1

2
Rk { , }.
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Proposition
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Given s functions f1, . . . , fs ∈ F(M), we denote by F = (f1, . . . , fs)
the s-tuple of this data.

Proposition

Let (M, { , }) be a Poisson manifold and let us suppose that
F = (f1, . . . , fs) is involutive. Then,

(a) The Hamiltonian vector fields Xf1 , . . . , Xfs commute.

(b) The subalgebra of F(M), generated by the functions f1, . . . , fs is
also involutive.
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Algebraic integrability

Definition

Let (M, { , }) be a Poisson manifold of rank 2r and set a s-tuple
F = (f1, . . . , fs) of elements in F(M). We say that F is completely
integrable, in the sense of Liouville, if it is involutive, independent and
s = dim(M)− r.
In this case, (M, { , }, F ) is said to be a completely integrable system.

Important result: Liouville Theorem.
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Merci beaucoup à tous!
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